Computational imaging approaches to personalized gastric cancer treatment

个性化胃癌治疗的计算成像方法

基本信息

  • 批准号:
    10585301
  • 负责人:
  • 金额:
    $ 57.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-01 至 2028-02-29
  • 项目状态:
    未结题

项目摘要

ABSTRACT Gastric cancer is a major global disease burden and leading cause of cancer mortality worldwide. Current treatment decision is made primarily on the basis of staging, which divides patients into several prognostic groups. For patients with localized and locally advanced disease, curative-intent surgery with chemotherapy is the standard treatment. However, survival outcomes vary widely, even among patients with disease of the same stage. Certain patients with early-stage disease have a sufficiently low risk of recurrence and may not benefit from, or could even be harmed by, chemotherapy given the associated toxicity and side effects. Conversely, many patients with aggressive tumors do not respond well to standard chemotherapy and still recur despite receiving extensive but ineffective treatment. Therefore, current one-size-fits-all approach is suboptimal, leading to over- and under-treatment in many patients. There is an unmet need for reliable prognostic and predictive models to guide personalized treatment of gastric cancer. To address this unmet need, we propose robust radiomics features of tumor morphology and spatial heterogeneity and establish their prognostic value. In addition, we will incorporate pathobiological knowledge into the design of deep learning models for predicting prognosis. Further, we will develop novel deep learning architecture to analyze longitudinal images for predicting pathologic response to neoadjuvant therapy. Finally, by leveraging the complementary value of imaging data, clinicopathologic variables and serial serum markers, we will construct integrative models to further improve prediction. If successful, the proposed models will be useful in two ways: (1), identify which patients with early gastric cancer may safely forego chemotherapy and avoid toxicity; (2), select the most effective chemotherapy regimen for a given patient. Further, the models can also identify patients with advanced disease who do not respond to standard chemotherapy and may benefit from novel targeted therapy or immunotherapy. The proposed computational imaging approaches are generally applicable for response monitoring and disease surveillance in many solid tumor types. Finally, the AI-based imaging technology developed here can bring benefit to underserved populations in minority groups and community settings. Progress made in gastric cancer will not only improve outcomes for patients in the US but also have global impact given its high incidence and mortality worldwide.
摘要 胃癌是全球主要的疾病负担,也是全球癌症死亡的主要原因。 目前的治疗决定主要是根据分期做出的,分期将患者分为 几个预后组。对于局部和局部晚期疾病患者, 手术加化疗是标准治疗方法。然而,生存结果差异很大,甚至 在同一阶段的患者中。某些患有早期疾病的患者 复发风险足够低,可能不会受益于,甚至可能受到伤害, 考虑到化疗的毒副作用。相反,许多患者 侵袭性肿瘤对标准化疗反应不佳,尽管接受了化疗, 广泛但无效的治疗。因此,目前一刀切的做法是次优的, 导致许多患者的过度治疗和治疗不足。对可靠的预后评估的需求尚未得到满足。 和预测模型来指导胃癌的个性化治疗。为了解决这一未满足的需求, 我们提出了肿瘤形态和空间异质性的强大放射组学特征,并建立了 其预后价值。此外,我们将把病理生物学知识纳入设计, 用于预测预后的深度学习模型。此外,我们将开发新的深度学习, 分析纵向图像以预测对新辅助治疗的病理反应。 最后,通过利用影像学数据的互补价值,临床病理变量和序列 血清标志物,我们将构建综合模型,以进一步提高预测。如果成功, 提出的模型将在两个方面有用:(1),识别哪些早期胃癌患者可能 安全放弃化疗,避免毒副反应;(2)选择最有效的化疗方案 对于一个特定的病人。此外,该模型还可以识别患有晚期疾病的患者, 对标准化疗有反应,并可能受益于新的靶向治疗或免疫治疗。 所提出的计算成像方法一般适用于响应监测 和疾病监测。最后,基于AI的成像技术 在这里发展可以为少数群体和社区中得不到充分服务的人口带来好处 设置.在胃癌方面取得的进展不仅将改善美国患者的预后, 由于其在世界范围内的高发病率和死亡率,也具有全球影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruijiang Li其他文献

Ruijiang Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruijiang Li', 18)}}的其他基金

Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
  • 批准号:
    10594058
  • 财政年份:
    2018
  • 资助金额:
    $ 57.77万
  • 项目类别:
Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
  • 批准号:
    10332716
  • 财政年份:
    2018
  • 资助金额:
    $ 57.77万
  • 项目类别:
MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
  • 批准号:
    9026075
  • 财政年份:
    2016
  • 资助金额:
    $ 57.77万
  • 项目类别:
MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
  • 批准号:
    9197624
  • 财政年份:
    2016
  • 资助金额:
    $ 57.77万
  • 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
  • 批准号:
    8921946
  • 财政年份:
    2012
  • 资助金额:
    $ 57.77万
  • 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
  • 批准号:
    8279092
  • 财政年份:
    2012
  • 资助金额:
    $ 57.77万
  • 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
  • 批准号:
    8521207
  • 财政年份:
    2012
  • 资助金额:
    $ 57.77万
  • 项目类别:

相似海外基金

3D Engineered Model of Microscopic Colorectal Cancer Liver Metastasis for Adjuvant Chemotherapy Screens
用于辅助化疗筛选的显微结直肠癌肝转移 3D 工程模型
  • 批准号:
    10556192
  • 财政年份:
    2023
  • 资助金额:
    $ 57.77万
  • 项目类别:
Developing Digital Pathology Biomarkers for Response to Neoadjuvant and Adjuvant Chemotherapy in Breast Cancer
开发数字病理学生物标志物以应对乳腺癌新辅助和辅助化疗
  • 批准号:
    10315227
  • 财政年份:
    2021
  • 资助金额:
    $ 57.77万
  • 项目类别:
Circulating Tumour DNA Analysis Informing Adjuvant Chemotherapy in Stage III Colorectal Cancer: A Multicentre Phase II/III Randomised Controlled Trial (DYNAMIC-III)
循环肿瘤 DNA 分析为 III 期结直肠癌辅助化疗提供信息:多中心 II/III 期随机对照试验 (DYNAMIC-III)
  • 批准号:
    443988
  • 财政年份:
    2021
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Operating Grants
Establishment of new selection system for adjuvant chemotherapy of colorectal cancer
结直肠癌辅助化疗新选择体系的建立
  • 批准号:
    20K09011
  • 财政年份:
    2020
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improved survival by Helicobacter pylori-modulated immunity in gastric cancer patients with adjuvant chemotherapy
幽门螺杆菌调节免疫力可改善接受辅助化疗的胃癌患者的生存率
  • 批准号:
    19K09130
  • 财政年份:
    2019
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A new strategy of adjuvant chemotherapy for lung cancer based on the expression of anti-aging gene Klotho
基于抗衰老基因Klotho表达的肺癌辅助化疗新策略
  • 批准号:
    19K18225
  • 财政年份:
    2019
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel candidate factors predicting the effect of S-1 adjuvant chemotherapy of pancreatic cancer
预测胰腺癌S-1辅助化疗效果的新候选因素
  • 批准号:
    18K16337
  • 财政年份:
    2018
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Project 2-Metabolic Modulation of Myeloid-Derived Suppressor Cells to Increase Efficacy of Neo adjuvant Chemotherapy and Immunotherapy
项目2-骨髓源性抑制细胞的代谢调节以提高新辅助化疗和免疫疗法的疗效
  • 批准号:
    10005254
  • 财政年份:
    2018
  • 资助金额:
    $ 57.77万
  • 项目类别:
Radiogenomic tools for prediction of breast cancer neo-adjuvant chemotherapy response from pre-treatment MRI
通过治疗前 MRI 预测乳腺癌新辅助化疗反应的放射基因组学工具
  • 批准号:
    9763320
  • 财政年份:
    2018
  • 资助金额:
    $ 57.77万
  • 项目类别:
Analysis of the molecular mechanism for the prognostic biomarker of adjuvant chemotherapy
辅助化疗预后生物标志物的分子机制分析
  • 批准号:
    18K07341
  • 财政年份:
    2018
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了