Advanced Technologies for Ultra-Efficient Grid-Level Power Converters

超高效电网级电源转换器的先进技术

基本信息

  • 批准号:
    1307699
  • 负责人:
  • 金额:
    $ 37.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

Advances in the performance and efficiency of power electronics are vital for addressing the growing energy challenges we face. It has been estimated that power supply losses typically account for 20 to 70% of all energy that electronic products consume, and as much as 4% of our entire national electrical energy consumption can be traced to power supply losses for electronic loads, owing largely to poor average power supply efficiencies. Especially important are power supplies that operate from either the ac grid or from dc distribution voltages to supply low-voltage dc loads such as computers, electronic devices and LED lighting.Intellectual Merit: The research opportunity we address is to greatly improve power converters for delivering energy from high-voltage dc or ac sources to low-voltage dc loads. We focus on input voltages consistent with the ac grid (e.g., up to 240 Vac) and dc distribution systems (e.g., 260 ? 410 V dc), and output voltages of volts to tens of volts, as these are key applications for energy improvements. Our goal is to achieve efficiencies beyond 97% (3% loss) and maintain high efficiency for wide operating ranges, reducing loss by a factor of about 2-3 as compared to conventional systems. To achieve this goal, this research will develop new soft-switched resonant power converters that mitigate losses occurring in conventional designs. Innovations are pursued in each of the main power subsystems in a power converter (inverter stage, transformation stage, and rectifier stage), along with advances in system architecture and control. We introduce methods to shape the operating waveforms to reduce circuit stress and loss, enabling both high efficiency and small size. Moreover, we introduce means to provide operating ?gear shifts? that increase the range for which high-efficiency operation is maintained. Lastly, we exploit circuit topologies and a system architecture that reduce the burden (and loss) associated with voltage transformation. These technologies will be developed individually, integrated together, and validated in a series of prototype converters.Broader Impacts: The research program will also be leveraged to meet broader educational goals: it will enhance the education of students, including both undergraduate and graduate students. Research findings will be incorporated into the MIT curriculum, and will be disseminated more broadly through MIT?s online learning platforms and publications. We will also develop a ?research and learning? outreach program for K-12 students, exposing them to the role of power electronics in energy efficiency while collecting valuable data regarding power electronics usage.
电力电子性能和效率的进步对于解决我们所面临的日益增长的能源挑战至关重要。据估计,电源损耗通常占电子产品消耗的所有能量的20%至70%,而我们整个国家的电能消耗中有多达4%可以追溯到电子负载的电源损耗,这主要是由于平均电源效率较低。特别重要的是,从交流电网或直流配电电压运行的电源供应低压直流负载,如计算机,电子设备和LED照明。智力优势:我们的研究机会是要大大改善电源转换器,以提供能量从高压直流或交流源到低压直流负载。我们专注于与交流电网(例如,高达240伏)和直流配电系统(例如,260伏?输出电压从几伏到几十伏,因为这些都是改善能源的关键应用。我们的目标是实现超过97%的效率(3%的损耗),并在较宽的工作范围内保持高效率,与传统系统相比,将损耗减少约2-3倍。为了实现这一目标,本研究将开发新的软开关谐振功率变换器,以减轻传统设计中的损耗。随着系统架构和控制的进步,在功率转换器中的每个主要电源子系统(逆变器阶段,变换阶段和整流阶段)中进行创新。我们介绍了塑造工作波形的方法,以减少电路应力和损耗,实现高效率和小尺寸。此外,我们还介绍了提供操作?齿轮变化?这增加了保持高效率运行的范围。最后,我们利用电路拓扑和系统架构来减少与电压变换相关的负担(和损耗)。这些技术将单独开发,集成在一起,并在一系列原型转换器中进行验证。更广泛的影响:该研究项目还将被用于实现更广泛的教育目标:它将加强学生的教育,包括本科生和研究生。研究成果将被纳入麻省理工学院的课程,并将通过麻省理工学院更广泛地传播。美国在线学习平台和出版物。我们还将开发一个?研究和学习?为K-12学生提供外展计划,让他们了解电力电子在能源效率方面的作用,同时收集有关电力电子使用的宝贵数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Perreault其他文献

David Perreault的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Perreault', 18)}}的其他基金

Collaborative Research: Advances in High-Frequency Magnetics for High-Efficiency, High-Density Power Electronic Systems
合作研究:高效率、高密度电力电子系统的高频磁学进展
  • 批准号:
    1609240
  • 财政年份:
    2016
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Stacked Controlled-Cell Power Conversion Architecture for Grid-Connected Photovoltaic Systems
合作研究:用于并网光伏系统的堆叠式控制电池功率转换架构
  • 批准号:
    0925147
  • 财政年份:
    2009
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Standard Grant
Integrated Micro-Scale Power Electronics
集成微型电力电子器件
  • 批准号:
    0401278
  • 财政年份:
    2004
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Standard Grant

相似海外基金

Development of ultra-low-noise amplifier using spin maser in diamond for microwave quantum technologies
使用金刚石中的自旋微波激射器开发用于微波量子技术的超低噪声放大器
  • 批准号:
    23KJ2135
  • 财政年份:
    2023
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of Aluminium Sheet Compliant Clamping and Sealing Technologies to Unlock Ultra-High-Speed Blow Forming
开发铝板合规夹紧和密封技术以解锁超高速吹塑成型
  • 批准号:
    555873-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Alliance Grants
Excellence in Research’: Mechanistic Modelling and Validation Approaches to Decontaminate (+) ssRNA Viruses using Ultra-Violet Technologies
卓越研究 –:使用紫外线技术净化 ( ) ssRNA 病毒的机​​械建模和验证方法
  • 批准号:
    2200683
  • 财政年份:
    2022
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Standard Grant
Enabling Sustainable Ultra Reliable Computing and Communications over 5G+ Wireless Technologies
通过 5G 无线技术实现可持续的超可靠计算和通信
  • 批准号:
    561415-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Alliance Grants
HAINEM: Hardware Software Co-Design Solutions for Ultra-Efficient Artificial Intelligence and Neuromorphic Systems by Using Emerging Memory Technologies
HAINEM:利用新兴内存技术实现超高效人工智能和神经形态系统的硬件软件协同设计解决方案
  • 批准号:
    DGECR-2022-00101
  • 财政年份:
    2022
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Discovery Launch Supplement
HAINEM: Hardware Software Co-Design Solutions for Ultra-Efficient Artificial Intelligence and Neuromorphic Systems by Using Emerging Memory Technologies
HAINEM:利用新兴内存技术实现超高效人工智能和神经形态系统的硬件软件协同设计解决方案
  • 批准号:
    RGPIN-2022-04489
  • 财政年份:
    2022
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Aluminium Sheet Compliant Clamping and Sealing Technologies to Unlock Ultra-High-Speed Blow Forming
开发铝板合规夹紧和密封技术以解锁超高速吹塑成型
  • 批准号:
    555873-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Alliance Grants
Enabling Sustainable Ultra Reliable Computing and Communications over 5G+ Wireless Technologies
通过 5G 无线技术实现可持续的超可靠计算和通信
  • 批准号:
    561415-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Alliance Grants
Research on reconfigurable ultra-fast all-optical logic circuit technologies using semiconductor devices
利用半导体器件的可重构超高速全光逻辑电路技术研究
  • 批准号:
    21K18905
  • 财政年份:
    2021
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Robust ultra-high sensitivity proteomic technologies for limited samples
适用于有限样品的稳健超高灵敏度蛋白质组技术
  • 批准号:
    10388993
  • 财政年份:
    2020
  • 资助金额:
    $ 37.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了