Operadic Structures in Topological Recursion
拓扑递归中的操作结构
基本信息
- 批准号:1308604
- 负责人:
- 金额:$ 10.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Topological recursion is a recent development in geometry that assigns an infinite family of quantities (called correlation functions) to a spectral curve. Although it plays an important role in many branches of mathematics, such as enumerative geometry, Gromov-Witten theory, and random matrix theory, it is still a poorly understood phenomenon. The goal of the proposed project is to establish a general mathematical framework underlying topological recursion. This structure is expressed through the newly introduced concepts of a topological recursion (TR) operad and TR co-operad, and allows one to understand the types of enumerative and geometric problems where Eynard-Orantin theory appears, a precise mechanism to calculate the spectral curve of such a problem, and, conversely, a concrete geometric or enumerative problem associated to an arbitrary spectral curve. To be specific, the combinatorial structure of Eynard-Orantin recursion is easily seen to be modeled on a TR operad, while in many specific examples where Eynard-Orantin recursion appears, such as intersection numbers of moduli spaces of stable curves, Hurwitz theory, Kontsevich's matrix integral, etc., there is a naturally appearing TR co-operad. In general, the Laplace transform of a TR operad is conjectured to determine the spectral curve. On the other hand, a variation of the Feynman transform (which appears in modular operads), takes a TR operad to a TR co-operad in the category of topological spaces, which comes equipped with a natural measure. The volume of the TR co-operad is conjectured to determine the Eynard-Orantin correlation functions which underlie the original TRoperad.Successful completion of the project would go a long way to understanding the role and nature of topological recursion in general, and would provide several useful applications in enumerative geometry and Gromov-Witten theory. The area being investigated is the moduli space of Riemann surfaces, and related spaces. Such constructions arise in high energy physics and are crucial in our understanding of mirror symmetry, and more generally string theory. However, potential applications are not limited to theoretical physics. Because of the ubiquity of surfaces in everyday life, there are a surprising number of concrete applications for such an abstract subject. For example, ribbon graphs, one of the fundamental tools used to explore topological recursion, can be utilized in facial recognition algorithms. In addition, they appear in Feynman graph expansions, which are used to model particle collisions.
拓扑递归是几何学中的一项最新发展,它将无穷量族(称为相关函数)赋给一条谱曲线。虽然它在许多数学分支中扮演着重要的角色,如计数几何、Gromov-Witten理论和随机矩阵理论,但它仍然是一个鲜为人知的现象。拟议项目的目标是在拓扑递归基础上建立一个通用的数学框架。这种结构通过新引入的拓扑递归(Tr)算符和tr合作算符的概念来表示,并允许人们理解出现Eynard-Orantin理论的计数和几何问题的类型,计算这种问题的谱曲线的精确机制,反之,与任意谱曲线相关的具体几何或计数问题。具体地说,Eynard-Orantin递推的组合结构很容易被模拟在一个TR算子上,而在许多出现Eynard-Orantin递归的具体例子中,如稳定曲线的模空间的交数、Hurwitz理论、Kontsevich矩阵积分等,自然地出现了一个TrCoopad算子。通常情况下,为了确定谱曲线,需要猜想一个tr算子的拉普拉斯变换。另一方面,Feynman变换的一个变体(出现在模算子中),将一个tr算子转化为拓扑空间范畴中的一个tr合作算子,它配备了一种自然度量。成功地完成这个项目将对理解拓扑递归的作用和本质有很大帮助,并将在列举几何和Gromov-Witten理论中提供一些有用的应用。所研究的区域是黎曼曲面的模空间及其相关空间。这样的结构出现在高能物理中,对我们理解镜像对称性以及更广泛的弦理论是至关重要的。然而,潜在的应用并不局限于理论物理。由于表面在日常生活中无处不在,对于这样一个抽象的主题,有数量惊人的具体应用。例如,带状图是用于探索拓扑递归的基本工具之一,可以用于面部识别算法。此外,它们还出现在用于模拟粒子碰撞的费曼图展开中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brad Safnuk其他文献
Combinatorial models for moduli spaces of open Riemann surfaces
开黎曼曲面模空间的组合模型
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Brad Safnuk - 通讯作者:
Brad Safnuk
Exotic group actions on homology 3-spheres
同源 3 球体上的奇异群作用
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Brad Safnuk - 通讯作者:
Brad Safnuk
Topological recursion for open intersection numbers
开放交集数的拓扑递归
- DOI:
10.4310/cntp.2016.v10.n4.a5 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Brad Safnuk - 通讯作者:
Brad Safnuk
Brad Safnuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Geometric and topological mechanics of flexible structures
职业:柔性结构的几何和拓扑力学
- 批准号:
2338492 - 财政年份:2024
- 资助金额:
$ 10.85万 - 项目类别:
Continuing Grant
Novel antiferromagnetic topological spin structures using thin-film multilayer systems and their functionalities
使用薄膜多层系统的新型反铁磁拓扑自旋结构及其功能
- 批准号:
23K13655 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Pseudo lattice plane and topological order in glass structures
玻璃结构中的伪晶格平面和拓扑顺序
- 批准号:
23K17837 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Simultaneous optimization of crystal and magnetic structures: Applications to topological magnetic electrides
晶体和磁性结构的同时优化:在拓扑磁性电子化合物中的应用
- 批准号:
22KJ1151 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Search for novel topological quantum phases and elucidation of their electronic structures using multiple degrees of freedom in heavy electron systems
在重电子系统中使用多自由度寻找新颖的拓扑量子相并阐明其电子结构
- 批准号:
23H01132 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
International collaboration on topological magnetic structures and excitations in quantum magnets using neutron scattering
利用中子散射进行量子磁体拓扑磁结构和激发的国际合作
- 批准号:
23KK0051 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Topological physics beneath magnetic structures and interfaces on superconductors
磁结构和超导体界面下的拓扑物理
- 批准号:
2745398 - 财政年份:2022
- 资助金额:
$ 10.85万 - 项目类别:
Studentship
Topological and Geometric Modeling and Computation of Structures and Functions in Single-Cell Omics Data
单细胞组学数据中结构和功能的拓扑和几何建模及计算
- 批准号:
2151934 - 财政年份:2022
- 资助金额:
$ 10.85万 - 项目类别:
Continuing Grant
Arithmetic and Topological Structures in Physics
物理学中的算术和拓扑结构
- 批准号:
2104330 - 财政年份:2021
- 资助金额:
$ 10.85万 - 项目类别:
Continuing Grant