Arithmetic and Topological Structures in Physics
物理学中的算术和拓扑结构
基本信息
- 批准号:2104330
- 负责人:
- 金额:$ 44.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project funded by the NSF award is at the intersection of theoretical physics and geometry. Its main goal is the investigation of mathematical structures in various models of theoretical physics, ranging from string theory to quantum field theory and quantum statistical mechanics. The use of novel methods, arising from areas of mathematics such as arithmetic geometry, topology, and homotopy theory, to approach questions in physics, will make it possible to uncover hidden and deeper mathematical structures behind physical models. The project will have a strong educational component, involving the research training of several graduate and undergraduate students.The main research directions in this project include: the use of non-archimedean methods and geometries in the investigation of the AdS/CFT holographic correspondence of string theory; the development a theory of noncommutative twistor spaces and associated constructions of instantons; the construction of quantum statistical mechanical systems associated to arithmetic objects such as dessins d'enfant, Kuga and Shimura varieties, modular symbols and their generalizations, and their use in the investigation of number theoretic properties; categorifications of quantum statistical mechanical systems; motivic structures in quantum field theories such as SYK models; higher categories generalizations of classical and noncommutative motives; the use of noncommutative motives for the investigation of Feynman integrals of massive field theories; Fermi-Pasta-Ulam dynamics and KAM theorems on varieties over fields; height functions and Arakelov geometry in noncommutative and categorical settings; random walks and heat kernel computations on noncommutative geometries and on cubical sets models of distributed computating.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个由NSF奖资助的项目是理论物理和几何的交叉点。它的主要目标是研究各种理论物理模型中的数学结构,从弦理论到量子场论和量子统计力学。使用数学领域的新方法,如算术几何,拓扑学和同伦理论,来解决物理学问题,将有可能揭示隐藏在物理模型背后的更深层次的数学结构。该项目将具有很强的教育性,涉及对几名研究生和本科生的研究培训。该项目的主要研究方向包括:在弦理论的AdS/CFT全息对应研究中使用非阿基米德方法和几何;发展非对易扭量空间理论和相关的瞬子结构;与算术对象相关的量子统计力学系统的构建,如dessins d 'enfant,Kuga和Shimura变种,模符号及其推广,以及它们在数论性质研究中的应用;量子统计力学系统的简化;量子场论中的动机结构,如SYK模型;经典和非对易动机的更高类别概括;使用非对易动机研究大规模场论的费曼积分;费米-帕斯塔-乌拉姆动力学和KAM定理在各种领域;高度函数和阿拉克洛夫几何在非对易和分类设置;该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonarchimedean holographic entropy from networks of perfect tensors
- DOI:10.4310/atmp.2021.v25.n3.a2
- 发表时间:2018-12
- 期刊:
- 影响因子:1.5
- 作者:M. Heydeman;M. Marcolli;Sarthak Parikh;Ingmar Saberi
- 通讯作者:M. Heydeman;M. Marcolli;Sarthak Parikh;Ingmar Saberi
Fractality in cosmic topology models with spectral action gravity
具有谱作用引力的宇宙拓扑模型中的分形
- DOI:10.1088/1361-6382/ac7d8c
- 发表时间:2022
- 期刊:
- 影响因子:3.5
- 作者:Guicardi, Pedro;Marcolli, Matilde
- 通讯作者:Marcolli, Matilde
Quantum Operads
量子运算
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Combe, Noemie;Manin, Yuri I.;Marcolli, Matilde
- 通讯作者:Marcolli, Matilde
Moufang Patterns and Geometry of Information
- DOI:10.4310/pamq.2023.v19.n1.a7
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:N. Combe;Y. Manin;M. Marcolli
- 通讯作者:N. Combe;Y. Manin;M. Marcolli
Functor of points and height functions for noncommutative Arakelov geometry
非交换 Arakelov 几何的点函子和高度函数
- DOI:10.1016/j.geomphys.2021.104337
- 发表时间:2021
- 期刊:
- 影响因子:1.5
- 作者:Lima, Alicia;Marcolli, Matilde
- 通讯作者:Marcolli, Matilde
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matilde Marcolli其他文献
Log concavity of the Grothendieck class of $$\overline{{\mathcal {M}}}_{0,n}$$
- DOI:
10.1007/s10801-025-01428-0 - 发表时间:
2025-06-19 - 期刊:
- 影响因子:0.900
- 作者:
Paolo Aluffi;Stephanie Chen;Matilde Marcolli - 通讯作者:
Matilde Marcolli
Formal languages, spin systems, and quasicrystals
形式语言、自旋系统和准晶体
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Francesca Fernandes;Matilde Marcolli - 通讯作者:
Matilde Marcolli
Graph Grammars, Insertion Lie Algebras, and Quantum Field Theory
- DOI:
10.1007/s11786-015-0236-y - 发表时间:
2015-08-13 - 期刊:
- 影响因子:1.000
- 作者:
Matilde Marcolli;Alexander Port - 通讯作者:
Alexander Port
Noncommutative geometry, dynamics, and ∞-adic Arakelov geometry
- DOI:
10.1007/s00029-004-0369-3 - 发表时间:
2004-08-01 - 期刊:
- 影响因子:1.200
- 作者:
Caterina Consani;Matilde Marcolli - 通讯作者:
Matilde Marcolli
Error-Correcting Codes and Phase Transitions
- DOI:
10.1007/s11786-010-0031-8 - 发表时间:
2010-03-23 - 期刊:
- 影响因子:1.000
- 作者:
Yuri I. Manin;Matilde Marcolli - 通讯作者:
Matilde Marcolli
Matilde Marcolli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matilde Marcolli', 18)}}的其他基金
Geometry and Arithmetic in Theoretical Physics
理论物理中的几何与算术
- 批准号:
1707882 - 财政年份:2017
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
Noncommutative Geometry Models in Physics
物理学中的非交换几何模型
- 批准号:
1205440 - 财政年份:2012
- 资助金额:
$ 44.13万 - 项目类别:
Continuing Grant
FRG Collaborative Research: Noncommutative Geometry and Number Theory
FRG 合作研究:非交换几何与数论
- 批准号:
0651925 - 财政年份:2007
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Geometric and topological mechanics of flexible structures
职业:柔性结构的几何和拓扑力学
- 批准号:
2338492 - 财政年份:2024
- 资助金额:
$ 44.13万 - 项目类别:
Continuing Grant
Novel antiferromagnetic topological spin structures using thin-film multilayer systems and their functionalities
使用薄膜多层系统的新型反铁磁拓扑自旋结构及其功能
- 批准号:
23K13655 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Pseudo lattice plane and topological order in glass structures
玻璃结构中的伪晶格平面和拓扑顺序
- 批准号:
23K17837 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Simultaneous optimization of crystal and magnetic structures: Applications to topological magnetic electrides
晶体和磁性结构的同时优化:在拓扑磁性电子化合物中的应用
- 批准号:
22KJ1151 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Search for novel topological quantum phases and elucidation of their electronic structures using multiple degrees of freedom in heavy electron systems
在重电子系统中使用多自由度寻找新颖的拓扑量子相并阐明其电子结构
- 批准号:
23H01132 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
International collaboration on topological magnetic structures and excitations in quantum magnets using neutron scattering
利用中子散射进行量子磁体拓扑磁结构和激发的国际合作
- 批准号:
23KK0051 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
Topological physics beneath magnetic structures and interfaces on superconductors
磁结构和超导体界面下的拓扑物理
- 批准号:
2745398 - 财政年份:2022
- 资助金额:
$ 44.13万 - 项目类别:
Studentship
Topological and Geometric Modeling and Computation of Structures and Functions in Single-Cell Omics Data
单细胞组学数据中结构和功能的拓扑和几何建模及计算
- 批准号:
2151934 - 财政年份:2022
- 资助金额:
$ 44.13万 - 项目类别:
Continuing Grant
Topological Design of Mechanical Meta-Structures
机械元结构的拓扑设计
- 批准号:
DP210101353 - 财政年份:2021
- 资助金额:
$ 44.13万 - 项目类别:
Discovery Projects