Plaquette Percolation

牌匾渗滤

基本信息

  • 批准号:
    1308645
  • 负责人:
  • 金额:
    $ 28.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-15 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

There is a long and fruitful history of interaction between probability and many other fields such as combinatorics and ergodic theory. This proposal will further many of these connections in a number of fields including random simplicial complexes random matrix theory, extremal combinatorics and geometric group theory. In particular this proposal focuses on problems in the following areas: topology of random simplicial complexes, spectrum of random matrices, higher dimensional generalizations of percolation and subshifts of finite type.Randomness is evident in many aspects of modern life from conflicting political polls to fluctuations in the stock market. Probability theory is the branch of mathematics which tries to quantify randomness. Over the last few decades the language, ideas and results from probability theory have been applied to many different branches of mathematics. This proposal seeks to continue this trend and extend the connections between probability theory and several branches of mathematics. This proposal also will apply probability theory to topology, a branch of mathematics which until recently has had little interaction with probability. The grant has will sponsor talks that will let undergraduates learn about the ways that mathematics has been applied to a variety of fields.
概率论与许多其他领域,如组合学和遍历论之间的相互作用有着漫长而富有成果的历史。这一建议将在随机简单复合体、随机矩阵理论、极值组合学和几何群论等领域进一步深化这些联系。本文特别关注以下领域的问题:随机简单复体的拓扑结构、随机矩阵的谱、高维渗透的推广和有限型的子移。从相互矛盾的政治民意调查到股市波动,随机性在现代生活的许多方面都很明显。概率论是试图量化随机性的数学分支。在过去的几十年里,概率论的语言、思想和结果已经应用于许多不同的数学分支。本提案旨在延续这一趋势,并扩展概率论与几个数学分支之间的联系。这个建议也将概率论应用于拓扑学,这是数学的一个分支,直到最近才与概率论有很少的互动。该基金将赞助讲座,让本科生了解数学在各个领域的应用方式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Hoffman其他文献

Excess cost and inpatient stay of treating deep spinal surgical site infections.
治疗深部脊柱手术部位感染的额外费用和住院时间。
  • DOI:
    10.23736/s0394-9508.19.05016-2
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Barnacle;Dianne Wilson;C. Little;Christopher Hoffman;N. Raymond
  • 通讯作者:
    N. Raymond
A loosely Bernoulli counterexample machine
  • DOI:
    10.1007/bf02773483
  • 发表时间:
    1999-12-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Christopher Hoffman
  • 通讯作者:
    Christopher Hoffman
The Threshold for Integer Homology in Random d-Complexes
随机 d 复合体中整数同源性的阈值
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Christopher Hoffman;Matthew Kahle;Elliot Paquette
  • 通讯作者:
    Elliot Paquette
A family of nonisomorphic Markov random fields
  • DOI:
    10.1007/bf02771540
  • 发表时间:
    2004-12-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Christopher Hoffman
  • 通讯作者:
    Christopher Hoffman
Non-fixation for Conservative Stochastic Dynamics on the Line
线上保守随机动力学的非固定性

Christopher Hoffman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Hoffman', 18)}}的其他基金

Limiting Shape of First-Passage Percolation
限制第一通道渗透的形状
  • 批准号:
    1954059
  • 财政年份:
    2021
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Continuing Grant
Planar First Passage Percolation
平面第一通道渗滤
  • 批准号:
    1712701
  • 财政年份:
    2017
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Continuing Grant
Probability Postdoctoral Training Center
概率博士后培训中心
  • 批准号:
    1444084
  • 财政年份:
    2015
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Continuing Grant
Invariant Measures for Random Growth Processes
随机增长过程的不变测度
  • 批准号:
    0806024
  • 财政年份:
    2008
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Low-cost Ceramic Membranes for Drinking Water Treatment
SBIR 第一阶段:用于饮用水处理的低成本陶瓷膜
  • 批准号:
    0611153
  • 财政年份:
    2006
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Standard Grant
Ergodic Theory and Interacting Particle Systems
遍历理论和相互作用的粒子系统
  • 批准号:
    0501102
  • 财政年份:
    2005
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Continuing Grant
Ergodic Theory of d-adic Endomorphisms
d-进自同态的遍历理论
  • 批准号:
    0100445
  • 财政年份:
    2001
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9705911
  • 财政年份:
    1997
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Fellowship Award

相似海外基金

Bond percolationゲルによる網目構造と力学物性の相関解明
使用键渗流凝胶阐明网络结构与机械性能之间的相关性
  • 批准号:
    23K23403
  • 财政年份:
    2024
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidating subsurface water percolation processes that control the depth of shallow sliding surface on soil-mantled hillslopes
阐明控制土覆盖山坡上浅滑动面深度的地下水渗滤过程
  • 批准号:
    23KJ1244
  • 财政年份:
    2023
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Percolation Theory and Related Topics
渗滤理论及相关主题
  • 批准号:
    2246494
  • 财政年份:
    2023
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Continuing Grant
Bond percolationゲルによる網目構造と力学物性の相関解明
使用键渗流凝胶阐明网络结构与机械性能之间的相关性
  • 批准号:
    22H02135
  • 财政年份:
    2022
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Coupling of Modified Equation of State and Percolation Theory to Study Static and Dynamic Non-Equilibrium Phase Behavior of Heavy Oil in the Presence of Porous Medium
修正状态方程与渗流理论耦合研究多孔介质中稠油静态和动态非平衡相行为
  • 批准号:
    RGPIN-2019-06103
  • 财政年份:
    2022
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Discovery Grants Program - Individual
Bootstrap Percolation and Related Processes
Bootstrap 渗透及相关过程
  • 批准号:
    572362-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Random graphs and percolation processes
随机图和渗透过程
  • 批准号:
    RGPIN-2016-05949
  • 财政年份:
    2022
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Discovery Grants Program - Individual
Utilization of Percolation Theory and Multiphysics' Concept to Develop Dynamic Modeling and Accurate Upscaling Approaches for Two-Phase Flow during Immiscible Displacement of Heavy Oil in Porous Media
利用渗流理论和多物理场概念开发多孔介质中稠油非混相驱替过程中两相流的动态建模和精确放大方法
  • 批准号:
    RGPIN-2017-06877
  • 财政年份:
    2022
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Discovery Grants Program - Individual
Accessibility percolation
无障碍渗透
  • 批准号:
    2751521
  • 财政年份:
    2022
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Studentship
Percolation on hierarchical lattices: cluster sizes and critical exponents
分层格子上的渗透:簇大小和临界指数
  • 批准号:
    573692-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 28.54万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了