Percolation Theory and Related Topics
渗滤理论及相关主题
基本信息
- 批准号:2246494
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many large, complex systems arising in mathematics, physics, and elsewhere undergo phase transitions, where varying a parameter (e.g. the temperature or pressure) that describes the system at a small scale by a small amount through some special value causes an abrupt, qualitative change in the behaviour of the system on a large scale. Beyond the familiar examples of water freezing and boiling, phase transitions also occur in many other systems including ferromagnets, superconductors, superfluids, epidemics, and traffic. In each case, understanding when, how, and why the system undergoes a phase transition is of central importance in both theory and practice. Moreover, the basic mathematical principles underlying the occurrence of such phase transitions have much in common across these diverse situations, and the study of phase transitions has come to be recognised as a rich source of deep and beautiful pure mathematics that is of interest beyond and complementary to its practical origins. This project aims to develop our fundamental understanding of phase transitions and critical phenomena (the special properties exhibited by systems at the point of phase transition) through the study of probabilistic models. The project provides research training opportunities for graduate students. The project focuses on various probabilistic lattice models of statistical mechanics, including percolation, random walks, the Ising model, and the uniform spanning tree. In particular, the project aims to understand how the geometry of the underlying graph (e.g. the dimension of the lattice) influences the critical behaviour of the model, with focuses on quantitative aspects of critical phenomena and the comparison between short-range, long-range, and hierarchical models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在数学、物理和其他领域中出现的许多大型复杂系统都经历了相变,其中通过一些特殊值在小尺度上少量改变描述系统的参数(例如温度或压力)会导致系统在大尺度上的行为发生突然的质变。除了我们熟悉的水冻结和沸腾的例子,相变也发生在许多其他系统中,包括铁磁体、超导体、超流体、流行病和交通。在每种情况下,理解系统何时、如何以及为什么经历相变在理论和实践中都是至关重要的。此外,这种相变发生的基本数学原理在这些不同的情况下有很多共同点,并且相变的研究已经被认为是深刻而美丽的纯数学的丰富来源,它的兴趣超出了它的实际起源。本项目旨在通过概率模型的研究,发展我们对相变和临界现象(系统在相变点所表现出的特殊性质)的基本理解。本项目为研究生提供研究训练机会。该项目侧重于统计力学的各种概率格模型,包括渗透,随机漫步,伊辛模型和均匀生成树。具体而言,该项目旨在了解底层图形的几何形状(例如晶格的维度)如何影响模型的关键行为,重点关注关键现象的定量方面以及短程、远程和分层模型之间的比较。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Hutchcroft其他文献
Thomas Hutchcroft的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Representation Theory and Related Geometry
会议:表示论及相关几何
- 批准号:
2401049 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Conference: Resolution of Singularities, Valuation Theory and Related Topics
会议:奇点的解决、估值理论及相关主题
- 批准号:
2422557 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
- 批准号:
23K12970 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Comprehensive topological study on cobordism, bivariant theory, topology of spaces of morphisms and related topics
协边、二变理论、态射空间拓扑及相关主题的综合拓扑研究
- 批准号:
23K03117 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moduli Spaces of Higgs Bundles, Gauge Theory, and Related Topics
希格斯丛集的模空间、规范理论及相关主题
- 批准号:
2204346 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Coloring Graphs with Forbidden Structures and Investigations Related to Ramsey Theory
具有禁止结构的着色图以及与拉姆齐理论相关的研究
- 批准号:
2153945 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical Foundations for Yang-Mills Theory, Randomly Growing Surfaces, and Related Systems
杨米尔斯理论、随机生长曲面和相关系统的数学基础
- 批准号:
2153654 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Conference on Chromatic Homotopy Theory and Related Areas
色同伦理论及相关领域会议
- 批准号:
2220741 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Robust Acceleration and Preconditioning Methods for Data-Related Applications: Theory and Practice
协作研究:数据相关应用的鲁棒加速和预处理方法:理论与实践
- 批准号:
2208412 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Applying Critical Race Theory to investigate the impact of COVID-19-related policy changes on racial/ethnic disparities in medication treatment for opioid use disorder
应用批判种族理论来调查与 COVID-19 相关的政策变化对阿片类药物使用障碍药物治疗中种族/民族差异的影响
- 批准号:
10594573 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别: