Computational design and atomic layer deposition synthesis of stereochemically active multifunctional oxide nanostructures

立体化学活性多功能氧化物纳米结构的计算设计和原子层沉积合成

基本信息

  • 批准号:
    1309114
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Technical SummaryThis award supports a research program dedicated to exploring novel multifunctional tin-containing oxide materials, where the 2+ oxidation state of tin is associated with the presence of electron 'lone pairs.' Large ionic displacements induced by these sterically active, but chemically inert electrons lead to large elastic deformations and strong polar properties. The PIs' synergistic approach includes both materials theory and computation, and growth and characterization as essential interconnected parts of the project. Utilizing the combination of these tools, the PIs will: (a) investigate complex coupled phenomena - including elastic, polar and electronic ones - in bulk, thin-film and nanostructured forms of tin-based oxides, (b) identify rational pathways for achieving enhanced or yet unknown new properties in these compounds that will lead to advanced functionalities, (c) develop synthetic processes to grow tin-based oxides utilizing atomic layer / chemical vapor deposition as well as processing technologies to incorporate them into a variety of nanostructures.This project is a collaboration between the University of Connecticut and University of Illinois at Chicago, and includes a collaboration with Argonne National Laboratory. The PIs will use a unique atomic layer / chemical vapor deposition reactor to fabricate new multifunctional oxide materials with dimensions ranging from bulk-like multi-micron to nanometer, while preserving a high degree of structural conformality. The pertinent electroactive and electrochemical properties of these materials will be investigated as functions of not only composition and structure, but also film thickness from the micron length scale to the atomic, sub-nanometer regime. The utilization of an integrated simulation approach with established information flow from atomic / molecular scale to mesoscale will provide both support and guidance for the experimental growth and characterization efforts. Theory-and-simulation tasks include initial selection of candidate structures for synthesis, predictive evaluation of their properties, identification of optimal growth conditions and coarse-grained evaluation of functional behavior of nanostructures of different shapes and sizes made out of these materials. This research program will be integrated into educational and mentoring experiences for undergraduate and graduate students by training them in experimental and computational materials science techniques and incorporating the research results into courses in Condensed Matter Physics and Materials Science. Both PI institutions are located in areas with large populations of underrepresented minority students and provide well established programs for disseminating research findings and methodologies to middle and high school students and teachers either in the form of new physics, chemistry and engineering modules, or through series of workshops in science, math, and technology. The PIs will use both of these routes to encourage students from underrepresented minority groups to participate in science and technology activities related to this project.Nontechnical SummaryThis award supports a research program dedicated to exploring novel multifunctional tin-containing oxide materials, intended as environmentally benign replacements of lead-based compounds for a variety of technological applications including energy harvesting, storage and conversion, for example between mechanical and electrical forms of energy. The PIs' synergistic approach includes the use of materials theory and computation, and growth and characterization as essential interconnected parts of the project. The combination of these tools will help investigate elastic and electronic properties of bulk, thin-film and nanostructured forms of tin-based oxides, and develop synthetic processes to grow these structures with layer-by-layer deposition techniques as well as processing technologies for their potential incorporation into a variety of electronic devices.This project is a collaboration between the University of Connecticut and University of Illinois at Chicago, and includes a collaboration with Argonne National Laboratory. A unique layer-by-layer growth chamber will be used to fabricate new tin-oxide compounds with dimensions ranging from multi-micron to nanometer, while preserving a high degree of material quality. Electronic and mechanical properties of these materials will be investigated as functions of chemical composition and length scale of the grown samples. Computer simulations will provide support and guidance for the experimental growth and characterization efforts. Theory-and-simulation tasks include initial selection of candidate structures for synthesis, evaluation of their properties and identification of optimal growth conditions. This research program will be integrated into educational and mentoring experiences for undergraduate and graduate students by training them in the experimental and computational materials science techniques, and incorporating the research results into courses in Condensed Matter Physics and Materials Science. The institutions involved are located in with large populations of underrepresented minority students and provide well established programs for disseminating research findings and methodologies to middle and high school students and teachers either in the form of new physics, chemistry and engineering modules, or through series of workshops in science, math, and technology. Both these routes will be used to encourage students from underrepresented minority groups to participate in science and technology activities related to new materials.
该奖项支持一项致力于探索新型多功能含锡氧化物材料的研究计划,其中锡的2+氧化态与电子孤对的存在有关。“由这些空间活性但化学惰性的电子引起的大离子位移导致大的弹性变形和强极性。PI的协同方法包括材料理论和计算,以及生长和表征,作为项目的重要相互关联的部分。综合利用这些工具,主要研究者将:(a)研究锡基氧化物的本体、薄膜和纳米结构形式中的复杂耦合现象--包括弹性、极性和电子现象,(B)确定在这些化合物中实现增强的或未知的新性质的合理途径,这些性质将导致高级功能,(c)开发利用原子层生长锡基氧化物的合成工艺;化学气相沉积以及加工技术,将它们结合到各种纳米结构中。该项目是康涅狄格大学和伊利诺斯大学在芝加哥,并包括与阿贡国家实验室的合作。PI将使用独特的原子层/化学气相沉积反应器来制造新的多功能氧化物材料,其尺寸从块状多微米到纳米不等,同时保持高度的结构一致性。这些材料的相关的电活性和电化学性质将被调查的功能,不仅组成和结构,而且膜厚度从微米长度尺度的原子,亚纳米政权。利用一个集成的模拟方法,建立从原子/分子尺度到中尺度的信息流将提供支持和指导的实验生长和表征工作。理论和模拟任务包括合成候选结构的初步选择,其性能的预测评估,最佳生长条件的识别和粗粒度的评估由这些材料制成的不同形状和尺寸的纳米结构的功能行为。该研究计划将通过培训他们的实验和计算材料科学技术,并将研究成果纳入凝聚态物理和材料科学课程,为本科生和研究生提供教育和指导经验。这两个PI机构都位于少数民族学生人数众多的地区,并提供完善的方案,以新的物理,化学和工程模块的形式向初中和高中学生和教师传播研究成果和方法,或通过一系列科学,数学和技术研讨会。PI将利用这两种途径鼓励来自代表性不足的少数群体的学生参与与该项目相关的科学和技术活动。非技术摘要该奖项支持一项致力于探索新型多功能含锡氧化物材料的研究计划,旨在作为铅基化合物的环境友好替代品,用于各种技术应用,包括能量收集,存储和转换,例如在机械形式的能量和电形式的能量之间。PI的协同方法包括使用材料理论和计算,以及生长和表征作为项目的基本相互关联的部分。这些工具的结合将有助于研究锡基氧化物的块状、薄膜和纳米结构形式的弹性和电子特性,并开发合成工艺,通过逐层沉积技术和加工技术生长这些结构,以将其纳入各种电子器件。该项目是康涅狄格大学和伊利诺伊大学芝加哥分校之间的合作,包括与阿贡国家实验室的合作。独特的逐层生长室将用于制造尺寸从多微米到纳米的新型氧化锡化合物,同时保持高度的材料质量。这些材料的电子和机械性能将作为生长样品的化学成分和长度尺度的函数进行研究。计算机模拟将为实验生长和表征工作提供支持和指导。理论和模拟的任务包括初步选择候选结构的合成,评估其性能和确定最佳的生长条件。该研究计划将通过培训他们的实验和计算材料科学技术,并将研究成果纳入凝聚态物理和材料科学课程,为本科生和研究生提供教育和指导经验。参与的机构位于少数民族学生人数众多的地区,并提供完善的方案,以新的物理,化学和工程模块的形式向初中和高中学生和教师传播研究成果和方法,或通过科学,数学和技术的系列研讨会。这两条路线都将用来鼓励代表性不足的少数群体的学生参加与新材料有关的科学和技术活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Serge Nakhmanson其他文献

Atomic scale design of nanostructures
纳米结构的原子尺度设计
  • DOI:
    10.1080/00268970701189186
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    J. Bernholc;Wenbin Lu;Serge Nakhmanson;P. H. Hahn;Vincent Meunier;M. Nardelli;Wolf Gero Schmidt
  • 通讯作者:
    Wolf Gero Schmidt
Calibration of particle interactions for discrete element modeling of powder flow
粉末流离散元建模的颗粒相互作用校准
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Mike Fazzino;Ummay Habiba;Lukasz Kuna;Serge Nakhmanson;Rainer J. Hebert
  • 通讯作者:
    Rainer J. Hebert

Serge Nakhmanson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
  • 批准号:
    51008191
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
协同中继系统跨层资源分配与优化调度的理论及方法
  • 批准号:
    60972070
  • 批准年份:
    2009
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
新型M4受体选择性拮抗剂的研究
  • 批准号:
    30973615
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
多跳无线 MESH 网络中 QoS 保障算法的研究设计和性能分析
  • 批准号:
    60902041
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
下一代无线通信系统自适应调制技术及跨层设计研究
  • 批准号:
    60802033
  • 批准年份:
    2008
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
最优证券设计及完善中国资本市场的路径选择
  • 批准号:
    70873012
  • 批准年份:
    2008
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目
无重复析因设计的散度效应分析
  • 批准号:
    10626037
  • 批准年份:
    2006
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

A Computational Platform for In-Situ Structure Determination at Near-Atomic Resolution using Cryo-Electron Tomography
使用冷冻电子断层扫描以近原子分辨率原位结构测定的计算平台
  • 批准号:
    10466802
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
A Computational Platform for In-Situ Structure Determination at Near-Atomic Resolution using Cryo-Electron Tomography
使用冷冻电子断层扫描以近原子分辨率原位结构测定的计算平台
  • 批准号:
    10624852
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
A Computational Platform for In-Situ Structure Determination at Near-Atomic Resolution using Cryo-Electron Tomography
使用冷冻电子断层扫描以近原子分辨率原位结构测定的计算平台
  • 批准号:
    10581369
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
A Computational Platform for In-Situ Structure Determination at Near-Atomic Resolution using Cryo-Electron Tomography
使用冷冻电子断层扫描以近原子分辨率原位结构测定的计算平台
  • 批准号:
    10183362
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
Rational design of selective thermal atomic layer etching processes through computational chemistry
通过计算化学合理设计选择性热原子层蚀刻工艺
  • 批准号:
    420162003
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grants
Novel Computational Biomechanics Approach to Design of Bioengineered Tissue Construct for Meniscus Defect Repair
用于半月板缺损修复的生物工程组织结构设计的新型计算生物力学方法
  • 批准号:
    10172849
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
Manipulating Material Properties of Atomic Layer Deposited Oxide Thin Films by Electric Field: Experimental and Computational Design (ALDBIAS)
通过电场操纵原子层沉积氧化物薄膜的材料特性:实验和计算设计 (ALDBIAS)
  • 批准号:
    319413903
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Priority Programmes
Computational and Experimental Studies of the Amyloid Fibril Formation by PAPf39
PAPf39 淀粉样原纤维形成的计算和实验研究
  • 批准号:
    8279567
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
Computational and Experimental Studies of the Amyloid Fibril Formation by PAPf39
PAPf39 淀粉样原纤维形成的计算和实验研究
  • 批准号:
    8473884
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
Computational and Experimental RNA Nanobiology
计算和实验 RNA 纳米生物学
  • 批准号:
    9153759
  • 财政年份:
  • 资助金额:
    $ 25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了