Manipulating Material Properties of Atomic Layer Deposited Oxide Thin Films by Electric Field: Experimental and Computational Design (ALDBIAS)
通过电场操纵原子层沉积氧化物薄膜的材料特性:实验和计算设计 (ALDBIAS)
基本信息
- 批准号:319413903
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ALDBIAS project follows both technological and fundamental scientific objectives. On the technological side, ALDBIAS targets the advancement of plasma-enhanced (PE) atomic layer deposition (ALD) by applying an electric field (BIAS) to tailor the material properties at an atomic level. The scientific objective of the project is the profound understanding of relationships between material properties and factors influencing PEALD synthesis of thin oxide films, both with and without bias. ALDBIAS is expected to shed light on the influence of external electric field on the growth process of oxidic materials, mechanisms of material densification and crystallization, void formation, intermixing and mechanical properties of oxide composites. Combing this knowledge with the extensive expertise of the PP 1959 consortium in solid-state phenomena of oxides is essential for designing composite materials with tailored properties and for developing novel synthesis routes within ALDBIAS. Conversely, the results of ALDBIAS are also expected to impact research in other projects within the consortium. PEALD allows for only limited control of material properties by variation of plasma parameters. In contrast, applying bias to the substrate during ALD extends the available degrees of freedom in the manipulation of matter. In PEALD, this approach is still novel and significant advancement in thin films controlled by applying bias will be possible. This technology will be highly valuable not only for optical applications but also for high and low k dielectrics and to extend the efficiency and lifetime of ALD barrier coatings.Ultimately, achieving optimal control over the properties of PEALD grown layers requires a detailed knowledge of their structure, formation mechanisms and their dependence on external fields at an atomic level. However, such knowledge is difficult to access experimentally due to the complex structure of the layers, complicated formation mechanism and difficulties in measuring processes at the nanoscale. Therefore, the fundamental scientific objective of ALDBIAS is to target these questions combining both experimental and computational studies. The mechanisms in which bias influences PEALD process will be investigated in details at an atomic level using a hierarchy of systems with increasing complexity, starting with well-defined crystalline surfaces and advancing to single- and multicomponent amorphous models. This reductionist approach will facilitate comparison between experimental data and results of computer simulations. The results obtained in this part will guide the synthesis of PEALD coatings with improved mechanical properties by providing a profound atomistic understanding of the structure and mechanisms of void formation due to defects, ligands and reactive species and mechanism of film stress due to adhesion forces within film and at the interfaces.
ALDBIAS项目遵循技术和基本科学目标。在技术方面,ALDBIAS的目标是通过施加电场(BIAS)来在原子水平上定制材料特性,从而实现等离子体增强(PE)原子层沉积(ALD)的进步。该项目的科学目标是深刻理解材料特性与影响PEALD合成薄氧化物薄膜的因素之间的关系,无论是否有偏压。ALDBIAS有望揭示外电场对氧化物材料生长过程的影响,材料致密化和结晶化的机制,空隙的形成,混合和氧化物复合材料的力学性能。将这些知识与PP 1959财团在氧化物固态现象方面的广泛专业知识相结合,对于设计具有定制性能的复合材料和在ALDBIAS内开发新的合成路线至关重要。相反,ALDBIAS的结果预计也会影响联盟内其他项目的研究。PEALD仅允许通过等离子体参数的变化来有限地控制材料性质。相比之下,在ALD期间向衬底施加偏压扩展了物质操纵中的可用自由度。在PEALD中,这种方法仍然是新颖的,并且通过施加偏压来控制薄膜的显著进步将是可能的。这项技术将是非常有价值的,不仅为光学应用,但也为高和低k值,并延长ALD屏障涂层的效率和寿命。最终,实现PEALD生长层的性能的最佳控制需要详细的知识,其结构,形成机制和它们在原子水平上的外部场的依赖。然而,这些知识是很难获得实验由于复杂的层的结构,复杂的形成机制和测量过程中的困难,在纳米尺度。因此,ALDBIAS的基本科学目标是结合实验和计算研究来解决这些问题。偏压影响PEALD过程的机制将在原子水平上使用复杂性不断增加的系统层次进行详细研究,从定义明确的结晶表面开始,并推进到单组分和多组分非晶模型。这种简化的方法将有助于实验数据和计算机模拟结果之间的比较。在这一部分中获得的结果将指导PEALD涂层的合成与改善的机械性能,通过提供一个深刻的原子理解的结构和机制的空隙形成由于缺陷,配体和反应物种和膜应力的机制,由于膜内和界面处的粘附力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Marek Sierka其他文献
Professor Dr. Marek Sierka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Training Grant
ERI: Development of light-emitting devices having intensive quantum-optical properties using a low-dimensional semiconducting material
ERI:使用低维半导体材料开发具有强量子光学特性的发光器件
- 批准号:
2301580 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Experimental investigation on contribution of local heat flow and local material properties to thermoelectric performance in a macroscopic scale
宏观尺度局部热流和局部材料特性对热电性能贡献的实验研究
- 批准号:
23H01854 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
DMREF/Collaborative Research: Active Learning-Based Material Discovery for 3D Printed Solids with Locally-Tunable Electrical and Mechanical Properties
DMREF/协作研究:基于主动学习的材料发现,用于具有局部可调电气和机械性能的 3D 打印固体
- 批准号:
2323696 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Properties and quality development of frozen surimi made of yellowtail as a new raw material
新原料鰤鱼冷冻鱼糜的特性及品质开发
- 批准号:
23K05113 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
How does particle material properties insoluble and partially soluble affect sensory perception of fat based products
颗粒材料的不溶性和部分可溶特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Y512370/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Training Grant
DMREF/Collaborative Research: Active Learning-Based Material Discovery for 3D Printed Solids with Locally-Tunable Electrical and Mechanical Properties
DMREF/协作研究:基于主动学习的材料发现,用于具有局部可调电气和机械性能的 3D 打印固体
- 批准号:
2323695 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Quantitative modelling of SCALED material properties
SCALED 材料特性的定量建模
- 批准号:
10050058 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
RII Track-4:NSF: Programmed Material Transport Properties via Scalable Assembly Processes
RII Track-4:NSF:通过可扩展组装工艺编程材料传输属性
- 批准号:
2229784 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Probing 2D material properties using ultrafast Quantum Interference Control
使用超快量子干涉控制探测 2D 材料特性
- 批准号:
559996-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral