Atomistic Simulations of Nanoparticle Self-assembly: Ionic Solutions, Solvent Interfaces, and Electric Fields
纳米粒子自组装的原子模拟:离子溶液、溶剂界面和电场
基本信息
- 批准号:1309765
- 负责人:
- 金额:$ 23.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technical AbstractThis award supports precise atomistic modeling of materials self-assembled from colloidal nanoscale components (nanoparticles, large molecules) in bulk solutions, at solution interfaces, and in the presence of electric fields. In collaboration with several experimental groups, the PI group will explore the exact conditions under which material systems can self-assemble from different colloidal nanocomponents, characterize the structure and properties of such self-assembled materials, and provide guidance for their future experimental preparation. Of particular interest is to prepare materials with active planar and spherical interfaces covered with nanoparticles and bio-molecules, where their self-assembly processes and overall activity can be controlled by pH, ionic strengths, and electric fields. The research objectives of this work are:1) to study how functionalized nanoparticles and small proteins self-assemble in different solvents, at solvent interfaces, and in the presence of external fields, 2) to evaluate the structure and material properties of such material self-assemblies, 3) to decipher the rules which determine the conditions, under which the systems arrange in different conformations and phases, 4) to closely correlate the experimental and computational studies, and guide the experimental studies to explore possible applications of the materials.The approach is to use large scale atomistic molecular dynamics simulations, parameterized by quantum ab-initio codes, to address the proposed objectives in materials formed by self-assembled nanoscale components. The simulations will be performed with the goal to collect atomically precise data about the studied systems, rigorously analyze the data, and disclose the necessary information from them. Both graduate and undergraduate students will be actively engaged in these studies. They will write the codes, runs the simulations, analyze the data, visualize the obtained structures, and prepare the material for publications, presentations, and proposals for computation resources.Non-Technical AbstractThis award supports computational and theoretical research in the area of advanced materials formed by self-assembly of nanoscale components of inorganic and biological origins. The research will provide fundamental understanding and predictive modeling of the self-assembly process in three types of material systems: (a) colloidal nanoparticles at the interfaces of ionic solutions in electric fields, (b) hybrids of nanoparticles with proteins in ionic solutions, and (c) biologically-inspired non-spherical colloidal nanoparticles. The main aim of this research is to understand the conditions under which these systems form, guide experimentalists in their preparation and optimization, and examine the possible use of these systems in various industrial, energy, and biomedical applications. The educational objectives are: 1) to prepare the next generation of professionals in nanoscience by direct teaching and research experience for graduate students, undergrads and high school teachers, 2) to promote access to science and technology to underrepresented groups of students by reaching women students at all levels through the WISE (Women in Science and Engineering) program at UIC, which includes the WISE Wing inhabitants and the K-12 teachers and students in the WIN (Women in Nanotechnology) program with Motorola and the US Department of Labor, and 3) to attract the general public to nanoscience.
技术摘要该奖项支持精确的原子模型的材料自组装胶体纳米级组件(纳米粒子,大分子)在散装溶液中,在溶液界面,并在电场的存在下。PI小组将与多个实验小组合作,探索材料系统可以从不同胶体纳米组分自组装的确切条件,表征此类自组装材料的结构和性能,并为其未来的实验制备提供指导。特别感兴趣的是制备具有覆盖有纳米颗粒和生物分子的活性平面和球形界面的材料,其中它们的自组装过程和整体活性可以通过pH值、离子强度和电场来控制。这项工作的研究目标是:1)研究功能化纳米粒子和小分子蛋白质在不同溶剂中、溶剂界面和外场存在下的自组装; 2)评估这种材料自组装的结构和材料性质; 3)破译决定系统以不同构象和相排列的条件的规则; 4)将实验和计算研究紧密联系起来,并指导实验研究探索材料的可能应用。方法是使用大尺度原子分子动力学模拟,由量子从头算代码参数化,以解决在由自组装纳米级部件形成的材料中提出的目标。模拟的目标是收集有关所研究系统的原子级精确数据,严格分析数据,并从中披露必要的信息。研究生和本科生都将积极参与这些研究。他们将编写代码,运行模拟,分析数据,可视化所获得的结构,并为出版物,演示文稿和计算资源提案准备材料。非技术摘要该奖项支持通过无机和生物来源的纳米级组件自组装形成的先进材料领域的计算和理论研究。该研究将提供三种类型的材料系统中自组装过程的基本理解和预测建模:(a)电场中离子溶液界面处的胶体纳米颗粒,(B)离子溶液中纳米颗粒与蛋白质的混合物,以及(c)生物启发的非球形胶体纳米颗粒。本研究的主要目的是了解这些系统形成的条件,指导实验人员进行制备和优化,并研究这些系统在各种工业,能源和生物医学应用中的可能用途。教育目标是:1)通过为研究生、本科生和高中教师提供直接的教学和研究经验,培养下一代纳米科学专业人员,2)通过WISE接触各级女学生,促进代表性不足的学生群体获得科学和技术(妇女在科学和工程)方案在UIC,包括WISE Wing的居民和WIN的K-12教师和学生(妇女在纳米技术)计划与摩托罗拉和美国劳工部,和3)吸引公众对纳米科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Petr Kral其他文献
Highly Pegylated Sterically Stabilized Micelles in Aqueous Media: Structure, Dynamics, and Storage of Therapeutic Agents
- DOI:
10.1016/j.bpj.2011.11.2724 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Lela Vukovic;Fatima A. Khatib;Stephanie P. Drake;Antonett Madriaga;Kenneth S. Brandenburg;Alan T. Tang;Neil Shah;Petr Kral;Hayat Onyuksel - 通讯作者:
Hayat Onyuksel
Petr Kral的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Petr Kral', 18)}}的其他基金
Collaborative Research: Integrative Adaptation of Dendrimer-peptide Conjugates for Cancer Immunotherapy
合作研究:树状聚合物-肽缀合物对癌症免疫治疗的综合适应
- 批准号:
2212123 - 财政年份:2022
- 资助金额:
$ 23.28万 - 项目类别:
Continuing Grant
Multiscale Modeling of Chiral Self-assemblies of Superparamagnetic Nanoparticles
超顺磁性纳米颗粒手性自组装的多尺度建模
- 批准号:
1506886 - 财政年份:2015
- 资助金额:
$ 23.28万 - 项目类别:
Continuing Grant
Multiscale Modeling of Molecular Transport in Graphene Nanopores and Nanotubes
石墨烯纳米孔和纳米管中分子传输的多尺度建模
- 批准号:
0932812 - 财政年份:2009
- 资助金额:
$ 23.28万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
- 批准号:
2903298 - 财政年份:2027
- 资助金额:
$ 23.28万 - 项目类别:
Studentship
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
- 批准号:
EP/Y002474/1 - 财政年份:2024
- 资助金额:
$ 23.28万 - 项目类别:
Research Grant
Numerical simulations of lattice field theory
晶格场论的数值模拟
- 批准号:
2902259 - 财政年份:2024
- 资助金额:
$ 23.28万 - 项目类别:
Studentship
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23K25946 - 财政年份:2024
- 资助金额:
$ 23.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构化网格技术
- 批准号:
2348394 - 财政年份:2024
- 资助金额:
$ 23.28万 - 项目类别:
Standard Grant
CAREER: Chemically specific polymer models with field-theoretic simulations
职业:具有场论模拟的化学特定聚合物模型
- 批准号:
2337554 - 财政年份:2024
- 资助金额:
$ 23.28万 - 项目类别:
Continuing Grant
Scale Resolving Simulations for Innovations in Turbomachinery Design (SciFi Turbo)
涡轮机械设计创新的尺度解析模拟 (SciFi Turbo)
- 批准号:
10111062 - 财政年份:2024
- 资助金额:
$ 23.28万 - 项目类别:
EU-Funded
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 23.28万 - 项目类别:
Studentship
Capturing Oceanic Submesoscales, Stirring and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
- 批准号:
EP/Y014693/1 - 财政年份:2024
- 资助金额:
$ 23.28万 - 项目类别:
Research Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402947 - 财政年份:2024
- 资助金额:
$ 23.28万 - 项目类别:
Standard Grant














{{item.name}}会员




