Scalable Data Coupling Abstraction for Data-Intensive Simulation Workflows

数据密集型仿真工作流程的可扩展数据耦合抽象

基本信息

  • 批准号:
    1310283
  • 负责人:
  • 金额:
    $ 54.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-05-01 至 2017-04-30
  • 项目状态:
    已结题

项目摘要

A Scalable Data Management Abstraction for Large-scale Coupled Simulation WorkflowsCoupled scientific simulation workflows, integrating multiple physics and scales and running at very large scales on high-end resources, have the potential for achieving unprecedented levels of accuracy and providing dramatic insights into complex phenomena. However, the coupled component of these simulation workflows need to interact and exchange significant amounts of data at runtime, and the data often has to be transformed as it flows from source to destination. As the volumes and generation rates of this data grow, the costs (latencies and energy) associated with extracting this data and transporting it for coupling, transformation and analysis have become the dominating overheads and are dictating the level of performance and productivity that can be achieved.The goal of this project is to address these challenges and to develop conceptual solutions as well as a software framework that can enable the large-scale data-intensive simulations. Our approach is based on the premise that given the large data volumes and associated costs, data will have to be largely processed online, ?in-situ? and ?in-transit? while it is staged using resources within the computational platform, and the programming and runtime system must provide abstractions and mechanisms that facilitate such data processing. Our effort is organized around three key research thrusts: (1) Programming abstractions for in-situ/in-transit data management; (2) Design and implementation of a scalable data staging substrate; and (3) Data-centric mapping and scheduling.Data and compute intensive simulations are becoming increasingly critical to a wide range of science and engineering domains, and as a result, this research has the potential to drive research and innovations in these domains. The developed framework and benchmarks also provide computer scientists with a substrate to experiment with and explore data-centric research. The development of human resources, including the training of students, researchers and software professions, as well as outreach to minorities and underrepresented group, is integral to all aspects of this effort.
一个可扩展的数据管理抽象的大规模耦合仿真工作流耦合的科学仿真工作流,集成多个物理和规模和运行在非常大的规模上的高端资源,有可能实现前所未有的准确性水平,并提供戏剧性的见解复杂的现象。然而,这些仿真工作流的耦合组件需要在运行时交互和交换大量数据,并且数据通常必须在从源流向目的地时进行转换。随着这些数据的数量和生成速率的增长,与提取该数据并传输该数据以用于耦合相关联的能量和能量,转换和分析已经成为主要的管理费用,并决定了可以实现的性能和生产力水平。本项目的目标是解决这些挑战,并开发概念性解决方案以及软件框架,大规模数据密集型模拟。我们的方法是基于这样一个前提,即考虑到大量的数据和相关的成本,数据将不得不在很大程度上在线处理,?原地?然后呢?在途?而它是使用计算平台内的资源来分级的,并且编程和运行时系统必须提供便于这种数据处理的抽象和机制。我们的工作围绕三个关键的研究方向:(1)在现场/在途数据管理的编程抽象:(2)可扩展的数据分级基底的设计和实现;以及(3)以数据为中心的映射和调度。数据和计算密集型仿真对于广泛的科学和工程领域正变得越来越重要,并且因此,这项研究有可能推动这些领域的研究和创新。开发的框架和基准还为计算机科学家提供了一个实验和探索以数据为中心的研究的基础。开发人力资源,包括培训学生、研究人员和软件专业人员,以及与少数群体和代表性不足的群体进行外联,是这一努力的所有方面的组成部分。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Persistent Data Staging Services for Data Intensive In-situ Scientific Workflows
适用于数据密集型原位科学工作流程的持久数据暂存服务
Leveraging Renewable Energy in Edge Clouds for Data Stream Analysis in IoT
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Manish Parashar其他文献

Event-Driven FaaS Workflows for Enabling IoT Data Processing at the Cloud Edge Continuum
用于在云边缘连续体实现物联网数据处理的事件驱动的 FaaS 工作流程
Towards comprehensive dependability-driven resource use and message log-analysis for HPC systems diagnosis
  • DOI:
    10.1016/j.jpdc.2019.05.013
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Edward Chuah;Arshad Jhumka;Samantha Alt;Daniel Balouek-Thomert;James C. Browne;Manish Parashar
  • 通讯作者:
    Manish Parashar
In-situ feature-based objects tracking for data-intensive scientific and enterprise analytics workflows
Guest Editorial on Challenges of Large Applications in Distributed Environments (CLADE)
Computing Everywhere, All at Once: Harnessing the Computing Continuum for Science
一次性计算无处不在:利用计算连续体促进科学发展

Manish Parashar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Manish Parashar', 18)}}的其他基金

EAGER: Exploring intelligent services for managing uncertainty under constraints across the Computing Continuum: A case study using the SAGE platform
EAGER:探索在整个计算连续体的约束下管理不确定性的智能服务:使用 SAGE 平台的案例研究
  • 批准号:
    2238064
  • 财政年份:
    2022
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Standard Grant
Intergovernmental Personnel Act (IPA) with U of Utah - Manish Parashar partial 3rd year and full 4th year continuation (2021-2022)
与犹他大学的政府间人事法 (IPA) - Manish Parashar 部分第三年和完整第四年延续(2021-2022)
  • 批准号:
    2112830
  • 财政年份:
    2021
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Intergovernmental Personnel Award
EAGER: Exploring Federations of Campus and National Cyberinfrastructure as Scalable Platforms for Science: A Case Study using Open Science Grid
EAGER:探索校园联盟和国家网络基础设施作为可扩展的科学平台:使用开放科学网格的案例研究
  • 批准号:
    1441376
  • 财政年份:
    2014
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Standard Grant
II-NEW: An Experimental Platform for Investigating Energy-Performance Tradeoffs for Systems with Deep Memory Hierarchies
II-新:用于研究具有深度内存层次结构的系统的能源性能权衡的实验平台
  • 批准号:
    1305375
  • 财政年份:
    2013
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Standard Grant
Exploring Cloud Paradigm and Practices for Science and Engineering
探索科学与工程的云范式和实践
  • 批准号:
    1339036
  • 财政年份:
    2013
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Software Infrastructure for Accelerating Grand Challenge Science with Future Computing Platforms
协作研究:利用未来计算平台加速重大挑战科学的软件基础设施
  • 批准号:
    1216696
  • 财政年份:
    2012
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Error Estimation, Data Assimilation and Uncertainty Quantification for Multiphysics and Multiscale Processes in Geological Media
合作研究:地质介质中多物理场和多尺度过程的误差估计、数据同化和不确定性量化
  • 批准号:
    1228203
  • 财政年份:
    2012
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Standard Grant
US/India Workshop on Virtual Institutes for Computational and Data-Enabled Science & Engineering
美国/印度计算和数据科学虚拟研究所研讨会
  • 批准号:
    1210266
  • 财政年份:
    2012
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Standard Grant
CDI-Type II: Collaborative Research: Computational Models for Evaluating Long Term CO2 Storage in Saline Aquifers
CDI-Type II:合作研究:评估咸水层长期二氧化碳封存的计算模型
  • 批准号:
    0835436
  • 财政年份:
    2008
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Standard Grant
Sensor Systems Technologies for Data-Driven Dynamic Scientific Applications
用于数据驱动的动态科学应用的传感器系统技术
  • 批准号:
    0723594
  • 财政年份:
    2007
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
  • 批准号:
    2896325
  • 财政年份:
    2023
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Studentship
Collaborative Research: REU Site: Advancing Data-Driven Deep Coupling of Computational Simulations and Experiments
合作研究:REU 站点:推进数据驱动的计算模拟和实验的深度耦合
  • 批准号:
    2243981
  • 财政年份:
    2023
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Standard Grant
Data Analysis of Cross-Coupling Reactions Using Enhanced Mathematical Methods to Decipher Complexity
使用增强数学方法分析交叉偶联反应的复杂性
  • 批准号:
    2885384
  • 财政年份:
    2023
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Studentship
Collaborative Research: REU Site: Advancing Data-Driven Deep Coupling of Computational Simulations and Experiments
合作研究:REU 站点:推进数据驱动的计算模拟和实验的深度耦合
  • 批准号:
    2243980
  • 财政年份:
    2023
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Standard Grant
Coupling Independent metamaterial-based wireless power and data transfer system over a single channel for biomedical applications
通过单通道耦合独立的基于超材料的无线电源和数据传输系统,用于生物医学应用
  • 批准号:
    22K14260
  • 财政年份:
    2022
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating environmental and gene-environment contributors to Parkinson's disease risk by coupling quantitative environmental exposure data to iPSC modeling
通过将定量环境暴露数据与 iPSC 建模相结合,调查帕金森病风险的环境和基因环境因素
  • 批准号:
    10572740
  • 财政年份:
    2022
  • 资助金额:
    $ 54.73万
  • 项目类别:
Uncovering Competing Cross-Coupling Catalytic Cycles Through Rich Data Analysis of Reaction Outcomes Gained by High-throughput Experiment Screening
通过对高通量实验筛选获得的反应结果进行丰富的数据分析,揭示竞争的交叉偶联催化循环
  • 批准号:
    2742606
  • 财政年份:
    2022
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Studentship
The Solar Wind-Ionosphere-Thermosphere Coupling at Mars: Combined Data Analysis of Mars Express and MAVEN Observations.
火星上的太阳风-电离层-热层耦合:火星快车和 MAVEN 观测的综合数据分析。
  • 批准号:
    433762250
  • 财政年份:
    2020
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Research Grants
Coupling a physically-based, spatially distributed hydrological model with an Open Data Cube (ODC) ...
将基于物理的空间分布式水文模型与开放数据立方体 (ODC) 耦合...
  • 批准号:
    2435741
  • 财政年份:
    2020
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Studentship
CNH2-S: Testing the strength of coupling among climate, natural, and human systems using big data
CNH2-S:利用大数据测试气候、自然和人类系统之间的耦合强度
  • 批准号:
    2009833
  • 财政年份:
    2020
  • 资助金额:
    $ 54.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了