Collaborative Research: High Performance Cellular Simultaneous Recurrent Network based Pattern Recognition
合作研究:基于高性能蜂窝同时循环网络的模式识别
基本信息
- 批准号:1310353
- 负责人:
- 金额:$ 25.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a collaborative proposal between a neural network researcher, addressing the issues of face recognition and image recognition in general, and a researcher on a new class of electronic chip based on memristors. In recent years, new world records have been set in image recognition by convolutional neural networks, funded at other universities through the EFRI/COPN topic at NSF. At times, those systems have outperformed humans in those tasks. On the neural network side, this team plans to use a more general class of neural networks, the Cellular Simultaneous Neural Network (CSRN), to address benchmark challenges in face recognition where computers have yet to outperform humans. The CSRN may be viewed asa generalization of the convolutional network to add a kind of real-time recurrence or feedback, a kind of recurrence which is known to be crucial to the powers of biological brains. On the electronic hardware side, this proposal addresses a crucial challenge in continuing Moore's Law. The speed of computing chips is not expected to grow as fast as it did in the past, but thanks to breakthroughs in lithography and the recent work in memristors, we can still expect progress towards thousand or even millions of active processors on a chip. In order to make full use of this emerging new capability, new efforts are needed to integrate device work and systems level work together, in developing new architectures of real practical use. If successful, this project could be an important step forward in that effort. Memristors for use in memory are already being well-funded by industry, but the extension to active processing and learning is more of a high riskbreakthrough activity. This project also includes a substantial component of education and outreach, including development of systems to stimulate K-8 children.
这是一个神经网络研究人员之间的合作建议,解决了一般的人脸识别和图像识别问题,以及一个基于忆阻器的新型电子芯片的研究人员。 近年来,卷积神经网络在图像识别方面创造了新的世界纪录,该项目由其他大学通过NSF的EFRI/COPN主题资助。有时,这些系统在这些任务中的表现优于人类。在神经网络方面,该团队计划使用更一般的神经网络类别,即细胞同步神经网络(CSRN),来解决人脸识别中的基准挑战,其中计算机尚未超越人类。CSRN可以被视为卷积网络的推广,以添加一种实时递归或反馈,这种递归对生物大脑的能力至关重要。 在电子硬件方面,这一提议解决了延续摩尔定律的关键挑战。计算芯片的速度预计不会像过去那样快速增长,但由于光刻技术的突破和最近在忆阻器方面的工作,我们仍然可以期待在芯片上实现数千甚至数百万个有源处理器的进展。为了充分利用这一新兴的新能力,在开发真实的实用的新体系结构时,需要新的努力来将设备工作和系统级工作集成在一起。如果成功的话,这个项目可能是这一努力的重要一步。用于记忆的忆阻器已经得到了工业界的充分资助,但扩展到主动处理和学习更多的是一个高风险的突破性活动。 该项目还包括教育和外联的重要组成部分,包括开发激励K-8儿童的系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khan Iftekharuddin其他文献
Khan Iftekharuddin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khan Iftekharuddin', 18)}}的其他基金
SCC-IRG Track 2: Scalable Modeling and Adaptive Real-time Trust-based Communication (SMARTc) System for Roadway Inundations in Flood-Prone Communities
SCC-IRG 第 2 轨:针对易受洪水影响的社区道路洪水的可扩展建模和自适应实时基于信任的通信 (SMARTc) 系统
- 批准号:
1951745 - 财政年份:2020
- 资助金额:
$ 25.34万 - 项目类别:
Standard Grant
REU Site: Deep Learning Driven Cybersecurity Research in a Multidisciplinary Environment
REU 网站:多学科环境中深度学习驱动的网络安全研究
- 批准号:
1950704 - 财政年份:2020
- 资助金额:
$ 25.34万 - 项目类别:
Standard Grant
SGER: Grid-to-grid neural networks for innovative pose invariant face recognition
SGER:用于创新姿势不变人脸识别的网格到网格神经网络
- 批准号:
0715116 - 财政年份:2007
- 资助金额:
$ 25.34万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 25.34万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 25.34万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 25.34万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 25.34万 - 项目类别:
Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400166 - 财政年份:2024
- 资助金额:
$ 25.34万 - 项目类别:
Continuing Grant
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
- 批准号:
2420369 - 财政年份:2024
- 资助金额:
$ 25.34万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 25.34万 - 项目类别:
Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403399 - 财政年份:2024
- 资助金额:
$ 25.34万 - 项目类别:
Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400165 - 财政年份:2024
- 资助金额:
$ 25.34万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 25.34万 - 项目类别:
Standard Grant