Optical Studies of Spin in 2D Crystals

二维晶体中自旋的光学研究

基本信息

  • 批准号:
    1310661
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

****Technical Abstract****Two-dimensional (2D) crystals are a fascinating new class of materials that exhibit novel electronic, spintronic, and optical properties. In this project, we will use optical techniques to investigate the spin-dependent properties of two types of 2D crystals: MoS2 (and related metal dichalcogenides) and graphene. Monolayer MoS2 is a direct gap semiconductor with a giant spin splitting of the valence band at the K/K' valleys. Interestingly, this is predicted to suppress most types of spin relaxation and generate long spin lifetimes for holes. Further, the giant spin splitting makes MoS2 a promising candidate for realizing the intrinsic spin Hall effect. Our aim is to observe these novel properties using time-resolved Kerr microscopy to directly measure the spin polarization and spin dynamics in MoS2. Graphene is a promising material for spintronics due to its long spin diffusion length at room temperature. The forefront of the field of graphene spintronics concerns the nature of spin relaxation and induced magnetism. Nearly all studies are based on spin transport, but this approach has its limitations such as spin relaxation induced by ferromagnetic contacts and reliance on Hanle analysis. We will utilize time-resolved optical techniques to overcome these limitations. Together, these studies on MoS2 and graphene lie at the forefront of spin-dependent physics in 2D crystals. This project will support the education of two PhD students, who will receive excellent training for careers in industry and academia.****Non-Technical Abstract****Two-dimensional (2D) crystals are a remarkable class of materials that exhibit fascinating new properties and have the potential to revolutionize electronics beyond conventional silicon technologies. In particular for spintronic devices, 2D crystals are exhibiting much better performance than their three-dimensional counterparts and special spin-dependent properties related to their 2D structure are predicted. Why does 2D perform better, can it be further improved, and can the predicted new properties be demonstrated? To answer such key questions, we will use powerful imaging techniques combining ultrafast pulsed lasers and optical microscopes to directly visualize the motion and rotation of electron spins in 2D crystals. The spin can be thought of as a tiny magnet that is attached to an electron as is flows through a device. In a spintronic device, the direction of an electron's magnetic poles ("north" and "south") is used to carry information throughout the device, and this information can be manipulated by rotating the direction of the poles. By using lasers and optics to image the motion and rotation of these magnetic poles (i.e. spin), we can investigate how they hold information, how they lose information, and how the direction of the poles is related to the electron's motion. Understanding these issues will enable the development of advanced spintronic devices for electronics beyond silicon. This project will support the education of two PhD students, who will receive excellent training for careers in industry and academia.
* 技术摘要 * 二维(2D)晶体是一类迷人的新材料,具有新颖的电子,自旋电子学和光学特性。在这个项目中,我们将使用光学技术来研究两种类型的2D晶体的自旋相关性质:MoS 2(和相关的金属二硫属化物)和石墨烯。单层MoS_2是一种直接带隙半导体,在K/K ′谷处价带有巨大的自旋分裂。有趣的是,这被预测为抑制大多数类型的自旋弛豫,并产生长自旋寿命的空穴。此外,巨大的自旋分裂使MoS 2成为实现本征自旋霍尔效应的有希望的候选者。我们的目的是观察这些新的属性,使用时间分辨克尔显微镜直接测量的自旋极化和自旋动力学的MoS 2。石墨烯在室温下具有较长的自旋扩散长度,是一种很有前途的自旋电子学材料。石墨烯自旋电子学领域的最前沿涉及自旋弛豫和诱导磁性的性质。 几乎所有的研究都是基于自旋输运,但这种方法有其局限性,如铁磁接触引起的自旋弛豫和依赖Hanle分析。我们将利用时间分辨光学技术来克服这些限制。总之,这些对MoS 2和石墨烯的研究处于2D晶体中自旋相关物理学的最前沿。该项目将支持两名博士生的教育,他们将接受行业和学术界职业的优秀培训。非技术摘要 * 二维(2D)晶体是一类非凡的材料,具有迷人的新特性,并有可能在传统硅技术之外彻底改变电子产品。特别是对于自旋电子器件,2D晶体表现出比它们的三维对应物更好的性能,并且预测了与它们的2D结构相关的特殊自旋相关性质。为什么2D表现更好,它可以进一步改进,预测的新特性可以得到证明吗?为了回答这些关键问题,我们将使用强大的成像技术,结合超快脉冲激光和光学显微镜,直接可视化2D晶体中电子自旋的运动和旋转。自旋可以被认为是一个微小的磁铁,它附着在流经设备的电子上。在自旋电子器件中,电子磁极的方向(“北”和“南”)用于在整个器件中携带信息,并且可以通过旋转磁极的方向来操纵这些信息。通过使用激光和光学成像这些磁极的运动和旋转(即自旋),我们可以研究它们如何保存信息,如何丢失信息,以及磁极的方向如何与电子的运动相关。了解这些问题将使先进的自旋电子器件的发展超越硅电子。该项目将支持两名博士生的教育,他们将接受工业和学术界职业的优秀培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roland Kawakami其他文献

Ellipsometric study of the electronic structure of Ga1-xMnxAs and low-temperature GaAs
Ga1-xMnxAs 和低温 GaAs 电子结构的椭偏研究
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. S. Burch;J. Stephens;Roland Kawakami;D. Awschalom;D. N. Basov
  • 通讯作者:
    D. N. Basov
Structural and Magnetic Characterization of B20 Skyrmion Thin Films and Heterostructures Using Aberration-Corrected Lorentz TEM and Differential Phase Contrast STEM
使用像差校正洛伦兹 TEM 和微分相衬 STEM 对 B20 斯格明子薄膜和异质结构进行结构和磁性表征
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    B. Esser;Adam S. Ahmed;Roland Kawakami;D. W. McComb
  • 通讯作者:
    D. W. McComb
Spatial imaging of magnetically patterned nuclear spins in GaAs
GaAs 中磁图案核自旋的空间成像
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Stephens;Roland Kawakami;Jesse Berezovsky;M. Hanson;D. Shepherd;A. Gossard;D. Awschalom
  • 通讯作者:
    D. Awschalom

Roland Kawakami的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roland Kawakami', 18)}}的其他基金

MRI: Acquisition of Helium Recovery Equipment For Time-Resolved ARPES at NSF-NeXUS
MRI:在 NSF-NeXUS 采购用于时间分辨 ARPES 的氦回收设备
  • 批准号:
    2320634
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NEB: Developing a Graphene Spin Computer: Materials, Nano-Devices, Modeling, and Circuits
NEB:开发石墨烯自旋计算机:材料、纳米器件、建模和电路
  • 批准号:
    1124601
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Spin Coherence and Magnetism in Graphene
石墨烯中的自旋相干性和磁性
  • 批准号:
    1007057
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: In situ Optical and Magnetotransport Studies of Organic-Ferromagnetic-Semiconductor Hybrid Structures for Spin-Based Electronics
职业:用于自旋电子学的有机铁磁半导体混合结构的原位光学和磁输运研究
  • 批准号:
    0450037
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似海外基金

International Research Fellowship Program: Fundamental Studies of Spin-Exchange Optical Pumping for the Production of Large Quantities of Highly Spin-Polarized Noble Gases
国际研究奖学金计划:用于生产大量高自旋偏振稀有气体的自旋交换光泵浦基础研究
  • 批准号:
    0966393
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Fellowship Award
Studies of atomic quantum spin systems in optical lattices
光学晶格中原子量子自旋系统的研究
  • 批准号:
    0855643
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Magneto-optical studies of spin dynamics in semiconductor nanostructures
半导体纳米结构中自旋动力学的磁光研究
  • 批准号:
    299561-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    University Faculty Award
Optical Studies of Spin Dynamics, Interfacial Magnetism, and Barrier Heights in MgO Heterostructures and Devices
MgO 异质结构和器件中自旋动力学、界面磁性和势垒高度的光学研究
  • 批准号:
    0706681
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Magneto-optical studies of spin dynamics in semiconductor nanostructures
半导体纳米结构中自旋动力学的磁光研究
  • 批准号:
    299561-2004
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    University Faculty Award
Magneto-optical studies of spin dynamics in semiconductor nanostructures
半导体纳米结构中自旋动力学的磁光研究
  • 批准号:
    299561-2004
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    University Faculty Award
Magneto-optical studies of spin dynamics in semiconductor nanostructures
半导体纳米结构中自旋动力学的磁光研究
  • 批准号:
    300567-2004
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: In situ Optical and Magnetotransport Studies of Organic-Ferromagnetic-Semiconductor Hybrid Structures for Spin-Based Electronics
职业:用于自旋电子学的有机铁磁半导体混合结构的原位光学和磁输运研究
  • 批准号:
    0450037
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Magneto-optical studies of spin dynamics in semiconductor nanostructures
半导体纳米结构中自旋动力学的磁光研究
  • 批准号:
    299561-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    University Faculty Award
Magneto-optical studies of spin dynamics in semiconductor nanostructures
半导体纳米结构中自旋动力学的磁光研究
  • 批准号:
    300567-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了