Collaborative Research: Inference for Linear Model Parameters in Model-free Populations

合作研究:无模型群体中线性模型参数的推断

基本信息

  • 批准号:
    1310795
  • 负责人:
  • 金额:
    $ 19.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

It is common statistical practice to employ a linear, least squares analysis, even though the assumptions justifying the inference from such an analysis are not valid. The current goal is to provide a guide to useful inferential statements that can be justifiably used in the face of this common dilemma. For this purpose, begin with a nearly model-free description of the data generating process: the observations are a random sample from a population consisting of vector-valued covariates and accompanying real responses. Inference is in the form of a linear description of the relation between the response and the covariates. The target of inference is the, suitably defined, best linear description of the population dependence of the response on the covariates. A first task is to provide a mathematical framework to accurately describe such a situation and enable its rigorous analysis. Within this formulation possible forms of inference can then be investigated. It can be shown that the conventional sample least-squares estimate of the linear coefficients has certain asymptotic optimality properties. But the conventional standard errors and confidence intervals for these coefficients are in general not asymptotically correct. Correct asymptotic inference is provided by suitable forms of either the bootstrap or the so-called sandwich estimator. The current research will discuss variations of these inferential procedures. It will also describe situations in which these inferential procedures provide trustworthy results for realistic sample sizes. The model-free perspective leads to additional understanding of other important statistical settings involving possibly informative covariates. One of these relates to Randomized Clinical Trials in which interest centers on the Average Treatment Effect, compared to that of a placebo or alternate, standard treatment. The general formulation suggests use of a new estimator and related inference, and the properties and variants of this will be investigated.Statistical practice is built on and justified by corresponding statistical theory. That theory has a common overarching paradigm: Statistical data is observed. A statistical description is adopted for this data and the data is then analyzed according to this statistical description. There is a presumption in this paradigm that the analytic model agrees sufficiently well with the actual model that generated the data. This is often not the case in practice. The current proposal builds a new, coherent theory that goes beyond the common paradigm in that it allows the statistical model for the data and the model for the analysis to be very different. The effect of the proposed research should be to first warn practitioners of often encountered but rarely recognized dangers. These are inherent in the common practice of using linear models such as regression analysis and ANOVA when they may not sufficiently accurately represent the true nature of the statistical sample. It will then provide alternate forms of inference that are valid and can be responsibly utilized in such situations. To complement its theoretical, methodological orientation the research maintains close connections with applications through the applied activities of several of the senior investigators in diverse areas including social science - especially criminology -operations research and health care.
采用线性最小二乘分析是常见的统计实践,即使证明这种分析推断的假设是无效的。当前的目标是提供一个有用的推理陈述的指南,这些陈述可以在面对这种常见的困境时合理地使用。为此目的,从一个几乎无模型的数据生成过程描述开始:观察值是由向量值协变量和伴随的真实响应组成的总体中的随机样本。推理的形式是响应和协变量之间关系的线性描述。推理的目标是对响应对协变量的总体依赖性进行适当定义的最佳线性描述。第一个任务是提供一个数学框架来准确地描述这种情况,并使其能够进行严格的分析。在这个公式之内,推理的可能形式就可以被研究了。结果表明,线性系数的常规样本最小二乘估计具有一定的渐近最优性。但这些系数的常规标准误差和置信区间通常不是渐近正确的。正确的渐近推断是由适当形式的自举或所谓的三明治估计量提供的。目前的研究将讨论这些推理程序的变化。它还将描述这些推理程序为实际样本量提供可靠结果的情况。无模型的视角导致对其他重要统计设置的额外理解,这些设置可能涉及信息丰富的协变量。其中之一与随机临床试验有关,在随机临床试验中,人们关注的是与安慰剂或替代标准治疗相比的平均治疗效果。一般公式建议使用一个新的估计量和相关的推断,并将研究其性质和变体。统计实践建立在相应的统计理论的基础上,并得到相应的统计理论的证明。该理论有一个共同的总体范式:统计数据是观察到的。对该数据采用统计描述,然后根据该统计描述对数据进行分析。在这个范例中有一个假设,即分析模型与生成数据的实际模型非常吻合。在实践中,情况往往并非如此。目前的提议建立了一个新的、连贯的理论,超越了常见的范式,因为它允许数据的统计模型和分析模型非常不同。拟议研究的效果应该是首先警告从业者经常遇到但很少认识到的危险。当使用线性模型(如回归分析和方差分析)可能不能充分准确地代表统计样本的真实性质时,这些是使用线性模型的常见做法所固有的。然后,它将提供另一种有效的推理形式,并且可以在这种情况下负责任地使用。为了补充其理论和方法取向,该研究通过若干高级调查员在不同领域的应用活动,包括社会科学(特别是犯罪学)、运筹学和保健,与应用保持密切联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lawrence Brown其他文献

Surveillance results and bone effects in the Gulf War depleted uranium-exposed cohort
海湾战争贫铀暴露人群的监测结果和骨骼影响
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. McDiarmid;Marianne Cloeren;J. Gaitens;S. Hines;E. Streeten;Richard J. Breyer;Clayton H. Brown;M. Condon;T. Roth;M. Oliver;Lawrence Brown;M. Dux;M. Lewin;Frederick G. Strathmann;Maria A. Velez;P. Gucer
  • 通讯作者:
    P. Gucer
Correction to: Working with Misspecified Regression Models
  • DOI:
    10.1007/s10940-020-09464-8
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Richard Berk;Lawrence Brown;Andreas Buja;Edward George;Linda Zhao
  • 通讯作者:
    Linda Zhao
Biologic monitoring and surveillance results for the department of veterans affairs' depleted uranium cohort: Lessons learned from sustained exposure over two decades.
退伍军人事务部贫铀队列的生物监测和监测结果:二十年来持续暴露的经验教训。
  • DOI:
    10.1002/ajim.22435
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    M. McDiarmid;J. Gaitens;S. Hines;M. Condon;T. Roth;M. Oliver;P. Gucer;Lawrence Brown;J. Centeno;E. Streeten;K. Squibb
  • 通讯作者:
    K. Squibb
Health effects of depleted uranium on exposed Gulf War veterans.
贫铀对暴露的海湾战争退伍军人的健康影响。
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    M. McDiarmid;James P. Keogh;Frank J. Hooper;Kathleen McPhaul;K. Squibb;Robert L. Kane;R. DiPino;M. Kabat;Bruce Kaup;Larry D. Anderson;D. Hoover;Lawrence Brown;Matthew M. Hamilton;David Jacobson;Belton A. Burrows;Mark Walsh
  • 通讯作者:
    Mark Walsh
The Gulf War Depleted Uranium Cohort at 20 years: Bioassay Results and Novel Approaches to Fragment Surveillance
海湾战争 20 年后的贫铀队列:生物测定结果和碎片监视的新方法
  • DOI:
    10.1097/hp.0b013e31827b1740
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    M. McDiarmid;J. Gaitens;S. Hines;Richard J. Breyer;J. Wong;Susan M. Engelhardt;M. Oliver;P. Gucer;Robert L. Kane;A. Cernich;Bruce Kaup;D. Hoover;A. Gaspari;Juan Liu;Erin M. Harberts;Lawrence Brown;J. Centeno;Patrick J. Gray;Hanna Xu;K. Squibb
  • 通讯作者:
    K. Squibb

Lawrence Brown的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lawrence Brown', 18)}}的其他基金

Post Model Selection Inference and Empirical Bayes Methods
模型选择后推理和经验贝叶斯方法
  • 批准号:
    1007657
  • 财政年份:
    2010
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Seventh International Workshop on Objective Bayesian Methodology; Philadelphia, PA
第七届客观贝叶斯方法论国际研讨会;
  • 批准号:
    0924257
  • 财政年份:
    2009
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Shrinkage Estimation in Modern Statistics
现代统计学中的收缩估计
  • 批准号:
    0707033
  • 财政年份:
    2007
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Continuing grant
Prediction for Multi-factor Point Process Models
多因素点过程模型的预测
  • 批准号:
    0405716
  • 财政年份:
    2004
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Service Engineering of Human Tele-Queues: Empirically Based Stochastic Analysis of Telephone Call Centers
人工电话队列服务工程:基于经验的电话呼叫中心随机分析
  • 批准号:
    0223304
  • 财政年份:
    2002
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Asymptotic Equivalence in Nonparametric Function Problems-Theory and Applications
非参数函数问题中的渐近等价-理论与应用
  • 批准号:
    9971751
  • 财政年份:
    1999
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Continuing grant
Dissertation Research: Making Ends Meet: Differences AmongYoruba Women in Benin in the use of a Multiple Enterprise Economic Strategy
论文研究:收支平衡:贝宁约鲁巴妇女在使用多元化企业经济战略方面的差异
  • 批准号:
    9711900
  • 财政年份:
    1997
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Three Topics in Mathematical Statistics
数学科学:数理统计的三个主题
  • 批准号:
    9626118
  • 财政年份:
    1996
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Investigations in Mathematical Statistics
数学科学:数理统计研究
  • 批准号:
    9596094
  • 财政年份:
    1994
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Investigations in Mathematical Statistics
数学科学:数理统计研究
  • 批准号:
    9310228
  • 财政年份:
    1993
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
  • 批准号:
    2311249
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: MEDIUM: General and Scalable Pluggable Type Inference
合作研究:SHF:MEDIUM:通用且可扩展的可插入类型推理
  • 批准号:
    2312263
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324489
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
  • 批准号:
    2311251
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312502
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了