Post Model Selection Inference and Empirical Bayes Methods

模型选择后推理和经验贝叶斯方法

基本信息

  • 批准号:
    1007657
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

Consider a standard Gaussian multiple regression model involving p independent covariates. In many applications a first step of the analysis is to reduce the data via model selection to one containing only a subset of these possible predictors. If the covariates are correlated, conventional inference based on the selected model may be invalid; for example, probabilities that confidence intervals cover the true parameter values for the selected model may be grossly overstated. The investigators propose a version of classical inference criteria and a corresponding method for guaranteeing that post selection inferences will be valid within these criteria. The inference is conservative in that it is valid independent of the model selection method that was used, and correct (though possibly conservative) marginal coverage is guaranteed for all parameter configurations. The procedure is algorithmically easy to describe. However in its optimal implementation requires numerical estimation of certain probabilities related to high dimensional Gaussian distributions, and feasible computation of these probabilities for larger values of p is an issue still under investigation. Notwithstanding certain useful asymptotic bounds can be derived, and some important special cases can be analyzed with greater precision. Conventional statistical inference requires that a model of how the data were generated be known before the data are analyzed. Yet in applications involving such common procedures as the Analysis of Variance and multiple regression it is often the case that one or more model selection procedures are first undertaken in order to help determine a model for the analysis. This model selection is then followed by statistical tests and confidence intervals computed as if the final model had been chosen in advance of examining the data. Examples abound in the social sciences, in the econometric literature, in epidemiology and in genomics. This proposal begins by examining consequences of such a practice in order to categorize the degree to which it may be misleading and misguided. Without additional care the parameters being estimated are no longer well defined, and post-model-selection sampling distributions have properties that are very different from what would be the case without model selection. Statistical inference such as confidence intervals and statistical tests does not perform as is customarily assumed. Many authors have noted some or all of these problems, but have not proposed valid general statistical inference procedures to cope with the situation. The investigators propose and study a method that produces valid statistical inference within the models selected based on the observed data. The proposed approach is universally valid, independent of the procedure that was used to select the variables to be retained in the model. Thus, from this perspective it is not necessary to investigate the details of the various model selection proposals in current use. Nevertheless, certain models and model selection procedures do yield improved performance of our confidence interval proposal, and some aspects of this will naturally be included in our research. In particular some new model selection methods based on nonparametric Bayesian ideas will be investigated both for their ability to flexibly produce satisfactory models and from the perspective of post model selection inference. Extension of these post model selection ideas will also be explored in a variety of statistical settings beyond the most common Gaussian linear models that are the initial target of this proposal.
考虑一个涉及P独立协变量的标准高斯多元回归模型。在许多应用程序中,分析的第一步是通过模型选择将数据减少到仅包含这些可能预测因子子集的数据。如果协变量是相关的,则基于所选模型的常规推断可能无效;例如,置信区间涵盖所选模型的真实参数值的概率可能会被严重夸大。调查人员提出了一种经典推理标准的版本,并提出了一种确保选择后推断的相应方法在这些标准中有效。该推论是保守的,因为它与所使用的模型选择方法无关,并且可以保证所有参数配置(尽管可能是保守的)边缘覆盖范围。该过程在算法上很容易描述。但是,在其最佳实现中,需要对与高维高斯分布相关的某些概率进行数值估计,并且对于较大的P值,对这些概率的可行计算仍在研究中。尽管可以得出某些有用的渐近界限,并且可以更精确地分析一些重要的特殊情况。 常规的统计推断要求在分析数据之前知道如何生成数据的模型。然而,在涉及诸如方差分析和多元回归之类的常见程序的应用中,通常首先采用一个或多个模型选择程序,以帮助确定分析模型。然后,此模型选择之后是统计测试和置信区间计算的,就好像在检查数据之前已选择了最终模型一样。社会科学,计量经济学文献,流行病学和基因组学中的例子比比皆是。该建议首先要检查这种做法的后果,以便对可能具有误导性和误导性的程度进行分类。如果不额外护理,估计的参数不再定义,并且模型选择后的采样分布具有与没有模型选择的情况大不相同的属性。统计推断(例如置信区间和统计检验)并未按照通常的假设执行。许多作者注意到了一些或全部这些问题,但并未提出有效的一般统计推理程序来应对情况。研究人员提出并研究一种基于观察到的数据选择的模型中产生有效统计推断的方法。所提出的方法是普遍有效的,与选择要保留在模型中的变量的过程无关。因此,从这个角度来看,无需研究当前使用中各种模型选择建议的细节。然而,某些模型和模型选择程序确实会提高我们的置信区间建议的性能,并且其中的某些方面自然会包括在我们的研究中。特别是,将研究一些基于非参数贝叶斯想法的新模型选择方法,既将研究它们灵活地产生令人满意的模型的能力,也将从后选择推理的角度进行研究。这些邮政模型选择思想的扩展也将在最常见的高斯线性模型之外的各种统计环境中进行探讨,这是该提案的初始目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lawrence Brown其他文献

Surveillance results and bone effects in the Gulf War depleted uranium-exposed cohort
海湾战争贫铀暴露人群的监测结果和骨骼影响
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. McDiarmid;Marianne Cloeren;J. Gaitens;S. Hines;E. Streeten;Richard J. Breyer;Clayton H. Brown;M. Condon;T. Roth;M. Oliver;Lawrence Brown;M. Dux;M. Lewin;Frederick G. Strathmann;Maria A. Velez;P. Gucer
  • 通讯作者:
    P. Gucer
The Gulf War Depleted Uranium Cohort at 20 years: Bioassay Results and Novel Approaches to Fragment Surveillance
海湾战争 20 年后的贫铀队列:生物测定结果和碎片监视的新方法
  • DOI:
    10.1097/hp.0b013e31827b1740
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    M. McDiarmid;J. Gaitens;S. Hines;Richard J. Breyer;J. Wong;Susan M. Engelhardt;M. Oliver;P. Gucer;Robert L. Kane;A. Cernich;Bruce Kaup;D. Hoover;A. Gaspari;Juan Liu;Erin M. Harberts;Lawrence Brown;J. Centeno;Patrick J. Gray;Hanna Xu;K. Squibb
  • 通讯作者:
    K. Squibb
Hunting for significance: Bayesian classifiers under a mixture loss function
  • DOI:
    10.1016/j.jspi.2014.02.010
  • 发表时间:
    2014-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Igar Fuki;Lawrence Brown;Xu Han;Linda Zhao
  • 通讯作者:
    Linda Zhao
Health effects of depleted uranium on exposed Gulf War veterans.
贫铀对暴露的海湾战争退伍军人的健康影响。
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    M. McDiarmid;James P. Keogh;Frank J. Hooper;Kathleen McPhaul;K. Squibb;Robert L. Kane;R. DiPino;M. Kabat;Bruce Kaup;Larry D. Anderson;D. Hoover;Lawrence Brown;Matthew M. Hamilton;David Jacobson;Belton A. Burrows;Mark Walsh
  • 通讯作者:
    Mark Walsh
Biologic monitoring and surveillance results for the department of veterans affairs' depleted uranium cohort: Lessons learned from sustained exposure over two decades.
退伍军人事务部贫铀队列的生物监测和监测结果:二十年来持续暴露的经验教训。
  • DOI:
    10.1002/ajim.22435
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    M. McDiarmid;J. Gaitens;S. Hines;M. Condon;T. Roth;M. Oliver;P. Gucer;Lawrence Brown;J. Centeno;E. Streeten;K. Squibb
  • 通讯作者:
    K. Squibb

Lawrence Brown的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lawrence Brown', 18)}}的其他基金

Collaborative Research: Inference for Linear Model Parameters in Model-free Populations
合作研究:无模型群体中线性模型参数的推断
  • 批准号:
    1310795
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Seventh International Workshop on Objective Bayesian Methodology; Philadelphia, PA
第七届客观贝叶斯方法论国际研讨会;
  • 批准号:
    0924257
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Shrinkage Estimation in Modern Statistics
现代统计学中的收缩估计
  • 批准号:
    0707033
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing grant
Prediction for Multi-factor Point Process Models
多因素点过程模型的预测
  • 批准号:
    0405716
  • 财政年份:
    2004
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Service Engineering of Human Tele-Queues: Empirically Based Stochastic Analysis of Telephone Call Centers
人工电话队列服务工程:基于经验的电话呼叫中心随机分析
  • 批准号:
    0223304
  • 财政年份:
    2002
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Asymptotic Equivalence in Nonparametric Function Problems-Theory and Applications
非参数函数问题中的渐近等价-理论与应用
  • 批准号:
    9971751
  • 财政年份:
    1999
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing grant
Dissertation Research: Making Ends Meet: Differences AmongYoruba Women in Benin in the use of a Multiple Enterprise Economic Strategy
论文研究:收支平衡:贝宁约鲁巴妇女在使用多元化企业经济战略方面的差异
  • 批准号:
    9711900
  • 财政年份:
    1997
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Three Topics in Mathematical Statistics
数学科学:数理统计的三个主题
  • 批准号:
    9626118
  • 财政年份:
    1996
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Investigations in Mathematical Statistics
数学科学:数理统计研究
  • 批准号:
    9596094
  • 财政年份:
    1994
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Investigations in Mathematical Statistics
数学科学:数理统计研究
  • 批准号:
    9310228
  • 财政年份:
    1993
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于数学模型的媒介寄主选择偏好在柑橘黄龙病传播中的作用揭示
  • 批准号:
    12361097
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
基于整合多组学大数据并优化回归模型中收缩函数的奶牛基因组选择新方法研究
  • 批准号:
    32302711
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
带有交互效应的高维离散选择模型:理论研究及其应用
  • 批准号:
    72373106
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
离散选择面板数据模型的识别、估计与推断及其在企业决策研究中的应用
  • 批准号:
    72373175
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
区块链+供应链双链融合场景下可持续供应商选择决策模型研究
  • 批准号:
    72372136
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

PTSD and Autoimmune Disease: Towards Causal Effects, Risk Factors, and Mitigators
创伤后应激障碍 (PTSD) 和自身免疫性疾病:因果效应、危险因素和缓解措施
  • 批准号:
    10696671
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Achieving Sustained Control of Inflammation to Prevent Post-Traumatic Osteoarthritis (PTOA)
实现炎症的持续控制以预防创伤后骨关节炎 (PTOA)
  • 批准号:
    10641225
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10888065
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Testing a Memory-Based Hypothesis for Anhedonia
测试基于记忆的快感缺失假设
  • 批准号:
    10598974
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
The protective function of blood-borne monocytes/macrophages after delayed recanalization in a permanent MCAO rodent model
永久性 MCAO 啮齿动物模型延迟再通后血源性单核细胞/巨噬细胞的保护功能
  • 批准号:
    10806832
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了