Precision Measurements of Quantum Scattering Phase Shifts with a Juggling Fountain Clock
使用杂耍喷泉钟精确测量量子散射相移
基本信息
- 批准号:1311570
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This experimental research program will make precision measurements of quantum scattering phase shifts of ultracold cesium (Cs) atoms in an atomic clock. The group has demonstrated these measurements with a new type of scattering experiment that scatters a cesium atom in a coherent superposition of its two clock states off atoms in a pure state at ultracold temperatures. Each clock state experiences an s-wave scattering phase shift and, by detecting only the scattered part of each atom's wavefunction, the difference of the scattering phase shifts is directly observed as a phase shift of Ramsey fringes. A unique feature is that the observed difference of the scattering phase shifts is independent of the atomic density, providing atomic clock accuracy to scattering measurements. With high precision, the group has observed a number of Feshbach resonances with two clouds colliding at energies between 10 and 50 microKelvin, and recently at collision energies of order 1 microKelvin, within a single cloud. They will perform a first accuracy demonstration, which is expected to significantly improve the knowledge of the Cs-Cs interactions. The scattering lengths are presently insufficiently known that they impact the accuracy and operational parameters of cesium clocks, particularly the Atomic Clock Ensemble in Space (ACES) clock scheduled to fly on the International Space Station. The group will evaluate systematic errors, principally due to backgrounds, and improve the precision of the phase measurements. An improved theoretical understanding can guide future measurements, potentially studying different angular momenta, versus energy and magnetic field, and for various internal states. The group will also collaborate with national labs around the world to improve the accuracy of the best atomic clocks. The group provides a unique expertise on the design of microwave cavities for primary atomic clocks and participates in the accuracy evaluation of primary atomic clocks. Ideas developed as part of the juggling experimental work provided the explanation of the interactions of ultracold fermions for optical lattice clocks, recently experimentally observed in a chip-scale atomic clock and with a radio frequency transition in Li-6 fermions. Accurate time keeping is crucial for navigation, communication, global positioning, and national security. Recent research of this group has significantly advanced the accuracy of the atomic clocks that contribute to International Atomic Time (TAI). Their contributions were essential to realize the currently most accurate atomic clock. Novel advancements by the research have reduced many large systematic errors that previously limited the performance of atomic clocks. Earlier work had led to rubidium being adopted as the first amendment to the definition of the International System of Units (SI) second, novel space clock designs, and an understanding of the frequency shifts due to ultracold collisions in precision measurements. The research will further advance the most accurate precision measurements and the understanding of ultracold atom-atom interactions. The training of graduate and undergraudate students in many areas of modern technology from lasers, electro-optics, radio-frequency and microwave techniques, and atomic clocks and frequency control, is important for the development of the nation's scientific workforce.
该实验研究计划将在原子钟中精确测量超冷铯(Cs)原子的量子散射相移。该小组已经通过一种新型的散射实验证明了这些测量,该实验在超冷温度下将铯原子的两个时钟状态相干叠加在纯原子上。每个时钟状态经历s波散射相移,并且通过仅检测每个原子的波函数的散射部分,散射相移的差被直接观察为拉姆齐条纹的相移。一个独特的特点是,所观察到的散射相移的差异是独立的原子密度,提供原子钟精度的散射测量。该小组以高精度观察到了两个云在10至50微开尔文之间碰撞的费什巴赫共振,最近在单个云内的碰撞能量为1微开尔文。他们将进行第一次准确性演示,预计将显着提高Cs-Cs相互作用的知识。散射长度目前还不足以影响铯原子钟的准确性和运行参数,特别是计划在国际空间站上飞行的太空原子钟(ACES)。该小组将评估主要由背景引起的系统误差,并提高相位测量的精度。改进的理论理解可以指导未来的测量,可能研究不同的角动量,与能量和磁场,以及各种内部状态。该小组还将与世界各地的国家实验室合作,以提高最好的原子钟的准确性。该小组为原原子钟的微波腔设计提供独特的专业知识,并参与原原子钟的准确性评估。 作为杂耍实验工作的一部分开发的想法为光学晶格钟提供了超冷费米子相互作用的解释,最近在芯片级原子钟中进行了实验观察,并在Li-6费米子中进行了射频跃迁。准确的时间保持对于导航、通信、全球定位和国家安全至关重要。 该小组最近的研究大大提高了原子钟的准确性,为国际原子时(TAI)做出了贡献。他们的贡献对于实现目前最精确的原子钟至关重要。这项研究的新进展减少了许多以前限制原子钟性能的大系统误差。 早期的工作导致铷被采纳为国际单位制(SI)定义的第一个修正案,第二,新颖的空间时钟设计,以及对精密测量中超冷碰撞引起的频率偏移的理解。这项研究将进一步推进最精确的测量和对超冷原子-原子相互作用的理解。对研究生和本科生进行激光、电光学、射频和微波技术、原子钟和频率控制等现代技术许多领域的培训,对国家科学工作者的发展至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kurt Gibble其他文献
ミクロネシア連邦ポーンペイ州のナンマトル遺跡およびチェムェン島所在遺跡の現状調査報告書
密克罗尼西亚联邦波纳佩州南马特鲁岛和切姆文岛遗址现状调查报告
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Atsushi Yamaguchi;Marianna S. Safronova;Kurt Gibble;and Hidetoshi Katori;片岡修・長岡拓也・石村智 - 通讯作者:
片岡修・長岡拓也・石村智
Clock-line-mediated Sisyphus Cooling
时钟线介导的西西弗斯冷却
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Chun;Jacob L. Siegel;Benjamin D. Hunt;Tanner Grogan;Y. Hassan;K. Beloy;Kurt Gibble;Roger C. Brown;Andrew D. Ludlow - 通讯作者:
Andrew D. Ludlow
Narrow-line laser cooling of cadmium towards a portable optical lattice clock
针对便携式光学晶格钟的镉的窄线激光冷却
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Atsushi Yamaguchi;Kurt Gibble;Hidetoshi Katori - 通讯作者:
Hidetoshi Katori
Cold atoms in space: community workshop summary and proposed road-map
- DOI:
10.1140/epjqt/s40507-022-00147-w - 发表时间:
2022-11-20 - 期刊:
- 影响因子:5.600
- 作者:
Iván Alonso;Cristiano Alpigiani;Brett Altschul;Henrique Araújo;Gianluigi Arduini;Jan Arlt;Leonardo Badurina;Antun Balaž;Satvika Bandarupally;Barry C. Barish;Michele Barone;Michele Barsanti;Steven Bass;Angelo Bassi;Baptiste Battelier;Charles F. A. Baynham;Quentin Beaufils;Aleksandar Belić;Joel Bergé;Jose Bernabeu;Andrea Bertoldi;Robert Bingham;Sébastien Bize;Diego Blas;Kai Bongs;Philippe Bouyer;Carla Braitenberg;Christian Brand;Claus Braxmaier;Alexandre Bresson;Oliver Buchmueller;Dmitry Budker;Luís Bugalho;Sergey Burdin;Luigi Cacciapuoti;Simone Callegari;Xavier Calmet;Davide Calonico;Benjamin Canuel;Laurentiu-Ioan Caramete;Olivier Carraz;Donatella Cassettari;Pratik Chakraborty;Swapan Chattopadhyay;Upasna Chauhan;Xuzong Chen;Yu-Ao Chen;Maria Luisa Chiofalo;Jonathon Coleman;Robin Corgier;J. P. Cotter;A. Michael Cruise;Yanou Cui;Gavin Davies;Albert De Roeck;Marcel Demarteau;Andrei Derevianko;Marco Di Clemente;Goran S. Djordjevic;Sandro Donadi;Olivier Doré;Peter Dornan;Michael Doser;Giannis Drougakis;Jacob Dunningham;Sajan Easo;Joshua Eby;Gedminas Elertas;John Ellis;David Evans;Pandora Examilioti;Pavel Fadeev;Mattia Fanì;Farida Fassi;Marco Fattori;Michael A. Fedderke;Daniel Felea;Chen-Hao Feng;Jorge Ferreras;Robert Flack;Victor V. Flambaum;René Forsberg;Mark Fromhold;Naceur Gaaloul;Barry M. Garraway;Maria Georgousi;Andrew Geraci;Kurt Gibble;Valerie Gibson;Patrick Gill;Gian F. Giudice;Jon Goldwin;Oliver Gould;Oleg Grachov;Peter W. Graham;Dario Grasso;Paul F. Griffin;Christine Guerlin;Mustafa Gündoğan;Ratnesh K. Gupta;Martin Haehnelt;Ekim T. Hanımeli;Leonie Hawkins;Aurélien Hees;Victoria A. Henderson;Waldemar Herr;Sven Herrmann;Thomas Hird;Richard Hobson;Vincent Hock;Jason M. Hogan;Bodil Holst;Michael Holynski;Ulf Israelsson;Peter Jeglič;Philippe Jetzer;Gediminas Juzeliūnas;Rainer Kaltenbaek;Jernej F. Kamenik;Alex Kehagias;Teodora Kirova;Marton Kiss-Toth;Sebastian Koke;Shimon Kolkowitz;Georgy Kornakov;Tim Kovachy;Markus Krutzik;Mukesh Kumar;Pradeep Kumar;Claus Lämmerzahl;Greg Landsberg;Christophe Le Poncin-Lafitte;David R. Leibrandt;Thomas Lévèque;Marek Lewicki;Rui Li;Anna Lipniacka;Christian Lisdat;Mia Liu;J. L. Lopez-Gonzalez;Sina Loriani;Jorma Louko;Giuseppe Gaetano Luciano;Nathan Lundblad;Steve Maddox;M. A. Mahmoud;Azadeh Maleknejad;John March-Russell;Didier Massonnet;Christopher McCabe;Matthias Meister;Tadej Mežnaršič;Salvatore Micalizio;Federica Migliaccio;Peter Millington;Milan Milosevic;Jeremiah Mitchell;Gavin W. Morley;Jürgen Müller;Eamonn Murphy;Özgür E. Müstecaplıoğlu;Val O’Shea;Daniel K. L. Oi;Judith Olson;Debapriya Pal;Dimitris G. Papazoglou;Elizabeth Pasatembou;Mauro Paternostro;Krzysztof Pawlowski;Emanuele Pelucchi;Franck Pereira dos Santos;Achim Peters;Igor Pikovski;Apostolos Pilaftsis;Alexandra Pinto;Marco Prevedelli;Vishnupriya Puthiya-Veettil;John Quenby;Johann Rafelski;Ernst M. Rasel;Cornelis Ravensbergen;Mirko Reguzzoni;Andrea Richaud;Isabelle Riou;Markus Rothacher;Albert Roura;Andreas Ruschhaupt;Dylan O. Sabulsky;Marianna Safronova;Ippocratis D. Saltas;Leonardo Salvi;Muhammed Sameed;Pandey Saurabh;Stefan Schäffer;Stephan Schiller;Manuel Schilling;Vladimir Schkolnik;Dennis Schlippert;Piet O. Schmidt;Harald Schnatz;Jean Schneider;Ulrich Schneider;Florian Schreck;Christian Schubert;Armin Shayeghi;Nathaniel Sherrill;Ian Shipsey;Carla Signorini;Rajeev Singh;Yeshpal Singh;Constantinos Skordis;Augusto Smerzi;Carlos F. Sopuerta;Fiodor Sorrentino;Paraskevas Sphicas;Yevgeny V. Stadnik;Petruta Stefanescu;Marco G. Tarallo;Silvia Tentindo;Guglielmo M. Tino;Jonathan N. Tinsley;Vincenza Tornatore;Philipp Treutlein;Andrea Trombettoni;Yu-Dai Tsai;Philip Tuckey;Melissa A. Uchida;Tristan Valenzuela;Mathias Van Den Bossche;Ville Vaskonen;Gunjan Verma;Flavio Vetrano;Christian Vogt;Wolf von Klitzing;Pierre Waller;Reinhold Walser;Eric Wille;Jason Williams;Patrick Windpassinger;Ulrich Wittrock;Peter Wolf;Marian Woltmann;Lisa Wörner;André Xuereb;Mohamed Yahia;Efe Yazgan;Nan Yu;Nassim Zahzam;Emmanuel Zambrini Cruzeiro;Mingsheng Zhan;Xinhao Zou;Jure Zupan;Erik Zupanič - 通讯作者:
Erik Zupanič
時計遷移分光に向けたCd原子のレーザー冷却III
用于时钟跃迁光谱 III 的 Cd 原子激光冷却
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
山口 敦史;Kurt Gibble;香取 秀俊 - 通讯作者:
香取 秀俊
Kurt Gibble的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kurt Gibble', 18)}}的其他基金
Precision Measurements with Laser-Cooled Cadmium: Optical-Lattice Clock and Cold Collision Experiments
使用激光冷却镉进行精密测量:光学晶格时钟和冷碰撞实验
- 批准号:
2012117 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Laser-Cooling Cadmium for Optical Atomic Clock, Cold Collisions, and Quantum Gas Experiments
用于光学原子钟、冷碰撞和量子气体实验的激光冷却镉
- 批准号:
1607295 - 财政年份:2016
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Precision Measurements of Scattering Phase Shifts in a Juggling Atomic Clock
杂耍原子钟中散射相移的精确测量
- 批准号:
1209662 - 财政年份:2012
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Interferometric Quantum Scattering in a Juggling Atomic Clock
杂耍原子钟中的干涉量子散射
- 批准号:
0800233 - 财政年份:2008
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Quantum Scattering in a Juggling Atomic Fountain
杂耍原子喷泉中的量子散射
- 批准号:
0196519 - 财政年份:2001
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Quantum Scattering in a Juggling Atomic Fountain
杂耍原子喷泉中的量子散射
- 批准号:
9732455 - 财政年份:1998
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似海外基金
Quantum photonic sensors: enabling measurements with unprecedented precision using entangled photons
量子光子传感器:使用纠缠光子实现前所未有的精确测量
- 批准号:
576210-2022 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Quantum Standards and Ultimate Precision Measurements Based on Single Electrons
基于单电子的量子标准和终极精密测量
- 批准号:
18H05258 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Development of high precision SQUID magnetometer for measurements under high pressure and very low temperature and its application to the research on novel quantum phases
高压低温测量高精度SQUID磁力计研制及其在新型量子相研究中的应用
- 批准号:
15K13515 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Quantum Information for Precision Measurements
用于精密测量的量子信息
- 批准号:
EP/L001713/1 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Research Grant
Studies of anomalous superconducting properties near a quantum critical point by precision specific heat measurements
通过精确比热测量研究量子临界点附近的反常超导特性
- 批准号:
25610096 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Quantum precision measurements using atom interferometers with quantum degenerated atoms
使用原子干涉仪和量子简并原子进行量子精密测量
- 批准号:
21244063 - 财政年份:2009
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Quantum-Degenerate Gases for Precision Measurements (QuDeGPM)
用于精密测量的量子简并气体 (QuDeGPM)
- 批准号:
EP/G028427/1 - 财政年份:2008
- 资助金额:
$ 33万 - 项目类别:
Research Grant
Quantum-Degenerate Gases for Precision Measurements (QuDeGPM)
用于精密测量的量子简并气体 (QuDeGPM)
- 批准号:
EP/G026602/1 - 财政年份:2008
- 资助金额:
$ 33万 - 项目类别:
Research Grant
QuDeGPM - Quantum-Degenerate Gases for Precision Measurements
QuDeGPM - 用于精密测量的量子简并气体
- 批准号:
70407577 - 财政年份:2008
- 资助金额:
$ 33万 - 项目类别:
Research Grants
High Precision Landau Quantum Oscillation Measurements in the Normal and Mixed States of High-Temperature Superconductors
高温超导体正常状态和混合状态下的高精度朗道量子振荡测量
- 批准号:
9501419 - 财政年份:1995
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant














{{item.name}}会员




