Mathematical modeling and Computational Analysis of Cell Tissue Movement
细胞组织运动的数学建模和计算分析
基本信息
- 批准号:1311974
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cell locomotion plays an essential role during embryonic development, angiogenesis, tissue regeneration, the immune response, and wound healing in multicellular organisms. The major problems to be addressed in this project are (i) movement by shape changes, (ii) modeling of the intracellular mechanics, and (iii) integration of signaling, actin dynamics and mechanics in an integrated computational model of cell movement. Heretofore mathematical modeling has primarily focused on the mesenchymal mode, but the investigators first address the other end of the continuum. The overall objective is to produce a unified description for locomotion in a three-dimensional extracellular matrix that integrates signaling and mechanics. Movement by shape changes has not been studied in the context proposed, but it has recently been shown to be important in the movement of a number of cell types, and understanding the factors that affect the speed and efficiency of such movement is a challenging problem. This project develops mathematical models that can be used to study and quantify the importance of various factors, such as properties of the surrounding medium, that affect the efficiency of movement. The third component continues previous work by the principal investigator on signaling and will integrate a model of the control networks with the mechanical components that comprise the first topics. This will lead to the first model that incorporates both signaling and mechanics, and will result in a computational tool that should be very useful to the broader community.Cell movement is a very complex process that involves the spatial and temporal control and integration of a number of subprocesses, including the transduction of chemical or mechanical signals from the environment, intracellular biochemical responses, and translation of the intra- and extracellular signals into a mechanical response. While many single-celled organisms use flagella or cilia to swim, there are two basic modes of movement used by eukaryotic cells that lack such structures--mesenchymal and amoeboid. The former, which can be characterized as ?crawling? in fibroblasts or ?gliding? in keratocytes, involves the extension of finger-like pseudopodia and/or broad flat lamellipodia, whose protrusion is driven by actin polymerization at the leading edge. In the amoeboid mode, which does not rely on strong adhesion, cells are more rounded and employ shape changes to move--in effect 'jostling through the crowd' or 'swimming'. However, recent experiments have shown that numerous cell types display enormous plasticity in locomotion, in that they sense the mechanical properties of their environment and adjust the balance between the modes. Thus pure crawling and pure swimming are the extremes on a continuum of locomotion strategies, but many cells can sense their environment and use the most efficient strategy in a given context. This project uses innovative mathematical approaches to better understand the dynamics of cell locomotion, combining novel models with experimental data. Additionally, the research team includes postdoctoral researchers and graduate students, with the project providing an opportunity to work in an inherently interdisciplinary field.
在多细胞生物中,细胞运动在胚胎发育、血管生成、组织再生、免疫反应和伤口愈合过程中起着至关重要的作用。在这个项目中要解决的主要问题是:(i)由形状变化引起的运动,(ii)细胞内力学的建模,以及(iii)在细胞运动的综合计算模型中整合信号,肌动蛋白动力学和力学。到目前为止,数学模型主要集中在间质模式,但研究人员首先解决了连续体的另一端。总的目标是产生一个统一的描述运动在一个三维细胞外基质,整合信号和力学。形状变化的运动尚未在提出的背景下进行研究,但它最近被证明在许多细胞类型的运动中很重要,并且理解影响这种运动速度和效率的因素是一个具有挑战性的问题。该项目开发了数学模型,可用于研究和量化影响运动效率的各种因素的重要性,例如周围介质的特性。第三部分将继续首席研究员之前在信号方面的工作,并将控制网络模型与组成第一个主题的机械组件集成在一起。这将导致第一个结合信号和力学的模型,并将产生一个对更广泛的社区非常有用的计算工具。细胞运动是一个非常复杂的过程,涉及许多子过程的时空控制和整合,包括来自环境的化学或机械信号的转导,细胞内生化反应,以及细胞内和细胞外信号转化为机械反应。虽然许多单细胞生物使用鞭毛或纤毛来游泳,但真核细胞使用两种基本的运动模式,即间充质细胞和变形虫细胞,它们缺乏这种结构。前者可以被描述为“爬行”。在成纤维细胞或?滑翔?在角化细胞中,包括指状伪足和/或宽扁平板足的延伸,其突出是由前缘的肌动蛋白聚合驱动的。在变形虫模式下,细胞不依赖于强附着力,细胞更圆,并通过形状变化来移动——实际上是“挤过人群”或“游泳”。然而,最近的实验表明,许多细胞类型在运动中表现出巨大的可塑性,因为它们感知环境的机械特性并调整模式之间的平衡。因此,纯粹的爬行和纯粹的游泳是连续运动策略的极端,但许多细胞可以感知它们的环境,并在给定的环境中使用最有效的策略。本项目采用创新的数学方法,结合新颖的模型和实验数据,更好地理解细胞运动的动力学。此外,研究团队包括博士后研究人员和研究生,该项目提供了一个在跨学科领域工作的机会。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of a model microswimmer with applications to blebbing cells and mini-robots
分析微型游泳器模型及其在起泡细胞和微型机器人中的应用
- DOI:10.1007/s00285-018-1225-y
- 发表时间:2018
- 期刊:
- 影响因子:1.9
- 作者:Wang, Qixuan;Othmer, Hans G.
- 通讯作者:Othmer, Hans G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans Othmer其他文献
Introduction to the special collection in honor of Avner Friedman
- DOI:
10.1007/s00285-022-01864-7 - 发表时间:
2023-01-25 - 期刊:
- 影响因子:2.300
- 作者:
Hans Othmer;Yuan Lou;Philip Maini;Urszula Ledzewicz - 通讯作者:
Urszula Ledzewicz
Hans Othmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans Othmer', 18)}}的其他基金
Mathematical Modeling and Computational Analysis of Cell Movement
细胞运动的数学建模和计算分析
- 批准号:
1853357 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Mathematical Modeling and Computational Analysis of Cell and Tissue Movement
细胞和组织运动的数学建模和计算分析
- 批准号:
0817529 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical Modeling and Computational Analysis of Cell and Tissue Movement
细胞和组织运动的数学建模和计算分析
- 批准号:
0517884 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Mathematical Modeling and Computational Analysis of Cell and Tissue Movement
细胞和组织运动的数学建模和计算分析
- 批准号:
0317372 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Modeling and Computational Studies of Cell and Tissue Movement
细胞和组织运动的建模和计算研究
- 批准号:
0096312 - 财政年份:1999
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Modeling and Computational Studies of Cell and Tissue Movement
细胞和组织运动的建模和计算研究
- 批准号:
9805494 - 财政年份:1998
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Mathematical Sciences: Special Year in Mathematical Biology
数学科学:数学生物学特别年
- 批准号:
9503478 - 财政年份:1995
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Mathematical Sciences: Continuum Models of Phase Transitions, Fronts and Interfaces; Salt Lake City, Utah, January 25-27, 1990
数学科学:相变、前沿和界面的连续体模型;
- 批准号:
8918802 - 财政年份:1990
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Pattern Formation and CellMovement
数学科学:模式形成和细胞运动的研究
- 批准号:
8901388 - 财政年份:1989
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical Sciences: 1988 Gordon Research Conference on Theoretical Biology and Biomathematics; June 13-17, 1988; Tilton, New Hampshire
数学科学:1988年戈登理论生物学和生物数学研究会议;
- 批准号:
8807874 - 财政年份:1988
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
页岩超临界CO2压裂分形破裂机理与分形离散裂隙网络研究
- 批准号:
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
- 批准号:40972154
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
ABM有效性检验的关键技术研究
- 批准号:70701001
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
三峡库区以流域为单元森林植被对洪水影响研究
- 批准号:30571486
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Mathematical and computational modeling of suicidal thoughts and behaviors
自杀想法和行为的数学和计算模型
- 批准号:
10437592 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Mathematical and Computational Modeling of Interaction between Fluids and Poroelastic Structures
流体与多孔弹性结构之间相互作用的数学和计算模型
- 批准号:
2111129 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Data-Driven Mathematical and Computational Modeling of Hepatitis D Infection and Treatment Response
丁型肝炎感染和治疗反应的数据驱动数学和计算模型
- 批准号:
9973575 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Data-Driven Mathematical and Computational Modeling of Hepatitis D Infection and Treatment Response
丁型肝炎感染和治疗反应的数据驱动数学和计算模型
- 批准号:
10326851 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Data-Driven Mathematical and Computational Modeling of Hepatitis D Infection and Treatment Response
丁型肝炎感染和治疗反应的数据驱动数学和计算模型
- 批准号:
10551347 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Collaborative Integration of Hepatitis B Molecular Virology and Mathematical/Computational Modeling
乙型肝炎分子病毒学与数学/计算模型的协作整合
- 批准号:
10542358 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Computational and mathematical modeling of biomedical systems
生物医学系统的计算和数学建模
- 批准号:
10629316 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Mathematical Modeling and Computational Analysis of Cell Movement
细胞运动的数学建模和计算分析
- 批准号:
1853357 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Computational and mathematical modeling of biomedical systems
生物医学系统的计算和数学建模
- 批准号:
10186774 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Imputing single cell RNA sequencing data: Mathematical, statistical and computational challenges
估算单细胞 RNA 测序数据:数学、统计和计算挑战
- 批准号:
9902859 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别: