Formally determined inverse problems for hyperbolic PDEs
双曲偏微分方程的正式确定的反问题
基本信息
- 批准号:1312708
- 负责人:
- 金额:$ 8.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-15 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In geophysics one is interested in recovering the acoustic properties of a three dimensional medium from the medium response when probed by an acoustic wave. The property of the medium is modeled by a function of three variables, loosely called the potential, and the acoustic wave satisfies the wave equation with the zeroth order term coefficient being the potential. The PI proposes studying two specific problems. In the first problem, the medium is probed by a plane wave and the medium response is measured in the same direction as the incoming wave, over a long enough time interval. This data is measured for incoming waves from all possible directions (the back-scattering data) and the goal is to recover the potential. The PI proposes studying the special case when the potential is analytic in the angular variables, by adapting Volterra type methods and using scales of Banach spaces - an idea used by Romanov on a different inverse problem. The PI proposes also using a time domain interpretation of the back-scattering problem which he has already used successfully to obtain new uniqueness results for certain restricted classes of potentials. In the second problem, the medium is excited by a point source placed at the center of the medium, the medium response is measured at the boundary for a long enough time period, and the goal, again, is the recovery of the potential. There are one dimensional versions of this problem, even with interior measurements, which remain unsolved with the chief difficulty being that the response is measured at points away from the source so that Volterra type methods such as layer stripping or downward continuation are not applicable. The PI proposes studying these problems with the help of Carleman estimates using results of Ionescu and Klainerman which give easily verifiable conditions for constructing radial Carleman weights.This work will be of interest to people working in geophysics, oil prospecting, medical imaging, fiber-optics, and in any area where one wishes to determine the properties of the interior of a medium from the response of the medium, measured on the boundary, to an acoustic wave generated at the boundary. The PI will supervise graduate students who will work on these problems towards a PhD and possible careers in the energy industry, the medical devices industry or in academia. Undergraduate students may study discrete versions of these problems in one space dimension. The results of this work will be disseminated through graduate seminars, publications in research journals, and presentations at conferences and introductory workshops for non-specialists.
在地球物理学中,人们感兴趣的是从声波探测时的介质响应中恢复三维介质的声学特性。介质的性质是用三个变量的函数来表示的,粗略地称为势,声波满足以零阶项系数为势的波动方程。PI建议研究两个具体问题。在第一个问题中,用平面波探测介质,在足够长的时间间隔内测量与入射波方向相同的介质响应。该数据测量来自所有可能方向的入射波(后向散射数据),目标是恢复势能。PI建议通过采用Volterra型方法和使用Banach空间的尺度(Romanov在另一个反问题上使用的思想)来研究角变量中势是解析的特殊情况。PI还建议使用后向散射问题的时域解释,他已经成功地使用该解释获得了某些受限势类的新的唯一性结果。在第二个问题中,介质被放置在介质中心的点源激发,在边界处测量足够长的时间内的介质响应,目标,同样,是恢复势。这个问题有一维的版本,即使是内部测量,仍然没有解决,主要的困难是响应是在远离源的点上测量的,因此Volterra类型的方法,如层剥离或向下延拓不适用。PI建议利用Ionescu和Klainerman的结果,利用Carleman估计来研究这些问题,这些结果给出了构造径向Carleman权值的容易验证的条件。这项工作将对从事地球物理学、石油勘探、医学成像、光纤和任何希望根据在边界上测量的介质对边界上产生的声波的响应来确定介质内部性质的领域的人们感兴趣。PI将指导研究生,这些学生将在这些问题上取得博士学位,并可能在能源行业、医疗设备行业或学术界从事职业。本科生可以在一个空间维度上学习这些问题的离散版本。这项工作的成果将通过研究生讨论会、研究期刊出版物、会议报告和非专业人员介绍性讲习班来传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rakesh Rakesh其他文献
Innovative Approaches for Characterizing Chlorantraniliprole and Its Metabolites in Soil, Water and Plants
表征土壤、水和植物中氯虫苯甲酰胺及其代谢物的创新方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rakesh Rakesh;H. Inani - 通讯作者:
H. Inani
Smart Systems and IoT: Innovations in Computing
智能系统和物联网:计算创新
- DOI:
10.1007/978-981-13-8406-6 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Arun K. Somani;Rajveer Singh;Ankit Mundra;S. Srivastava;Vivek Kumar Verma;.. .. .. .. .. D. Kumar;Nehal Patel;Radhika Patel;Jenny Kasudiya;Ankit Bhavsar;Harshal A. Arolkar;Tigilu Mitiku;M. S. Manshahia;Rutba Mufti;Kartike Khatri;Sumit Bhardwaj;Punit Gupta;Pankaj Kumar;Sidhartha Barui;Deepanwita Das;Mangala N. Sumedh;Sneha Srinivasan;S. Basavaraju;Nidhi Gangrade;Nirmal Choudhary;K. K. Bharadwaj;Abdul Rehman;Nitin Khan;Rakesh Rakesh;Matam;Dinesh Siddhant Goswami;Singh Shekhawat;Neetu Faujdar;Nitin Rakesh;P. Rohatgi;Karan Gupta;G. Chauhan;Y. Meena;Nidhi Gupta;Deepak Vaswani;Kuldeep Singh;Sakar Gupta;Sunita Gupta;Amit Deepak Soni;Kumar Behera;Dheeraj Sharma;M. Aslam;Shivendra Yadav;Nirav Bhatt;Amit Thakkar;Nikita Bhatt;Purvi Prajapati;Neeru Meena;Buddha Singh;Laxmi Chaudhary;Deepak Kumar - 通讯作者:
Deepak Kumar
Rakesh Rakesh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rakesh Rakesh', 18)}}的其他基金
The inverse backscattering problem and the inverse fixed angle scattering problem
逆后向散射问题和逆固定角散射问题
- 批准号:
2307800 - 财政年份:2023
- 资助金额:
$ 8.83万 - 项目类别:
Standard Grant
Inversion from Time Domain Backscattering Data for the Wave Equation
时域后向散射数据反演波动方程
- 批准号:
0907909 - 财政年份:2009
- 资助金额:
$ 8.83万 - 项目类别:
Standard Grant
相似海外基金
First year CDT Student - project to be determined later in year
第一年 CDT 学生 - 项目将于今年晚些时候确定
- 批准号:
2888320 - 财政年份:2023
- 资助金额:
$ 8.83万 - 项目类别:
Studentship
First year CDT Student - project to be determined later in year
第一年 CDT 学生 - 项目将于今年晚些时候确定
- 批准号:
2888347 - 财政年份:2023
- 资助金额:
$ 8.83万 - 项目类别:
Studentship
First year CDT Student - project to be determined later in year
第一年 CDT 学生 - 项目将于今年晚些时候确定
- 批准号:
2888309 - 财政年份:2023
- 资助金额:
$ 8.83万 - 项目类别:
Studentship
First year CDT Student - project to be determined later in year
第一年 CDT 学生 - 项目将于今年晚些时候确定
- 批准号:
2888343 - 财政年份:2023
- 资助金额:
$ 8.83万 - 项目类别:
Studentship
First year CDT Student - project to be determined later in year
第一年 CDT 学生 - 项目将于今年晚些时候确定
- 批准号:
2888385 - 财政年份:2023
- 资助金额:
$ 8.83万 - 项目类别:
Studentship
An Examination of the Legal Theory of Forest Theft Establishment Based on the Theory of Foreseeability: How should intent and negligence be determined?
基于可预见性理论的森林盗窃罪法理考察:故意与过失应当如何认定?
- 批准号:
23K17090 - 财政年份:2023
- 资助金额:
$ 8.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Nimble Artificial Intelligence Driven Robotic Solutions for Efficient and Self-Determined Handling and Assembly Operations
灵活的人工智能驱动的机器人解决方案,可实现高效、自主的搬运和装配操作
- 批准号:
10048288 - 财政年份:2023
- 资助金额:
$ 8.83万 - 项目类别:
EU-Funded
Empirical Study on International Migration of Young Highly Skilled in East Asia as Determined by the Expansion of Higher Education
高等教育扩张决定的东亚青年高技能国际移民实证研究
- 批准号:
23H00889 - 财政年份:2023
- 资助金额:
$ 8.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
First year CDT Student - project to be determined later in year
第一年 CDT 学生 - 项目将于今年晚些时候确定
- 批准号:
2888878 - 财政年份:2023
- 资助金额:
$ 8.83万 - 项目类别:
Studentship
First year CDT Student - project to be determined later in year
第一年 CDT 学生 - 项目将于今年晚些时候确定
- 批准号:
2888899 - 财政年份:2023
- 资助金额:
$ 8.83万 - 项目类别:
Studentship