Hyperbolic Inverse Problems
双曲反问题
基本信息
- 批准号:1908391
- 负责人:
- 金额:$ 11.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In fields such as oil and gas prospecting, mapping the interior of a planet, or medical imaging, one determines properties of the interior of an object such as the location of oil/gas deposits in the interior of the earth, characterize the interior composition of a planet, or determine if an interior lump in the body is cancerous or not. Since drilling or cutting is often expensive or unfeasible in these situations, these objects are probed by non-invasive methods such as sound waves generated on the boundary of the object. The expectation is that the interior composition of the object will influence the incoming waves and the response wave, also measured only on the boundary of the object, provides a mathematical window into the interior of the object. The principal investigator (PI) will study the mathematics behind this imaging technique. Further, the PI will train graduate students and postdocs in this type of mathematics through mini-courses, seminars, personal conversations and workshops. Some of these students and postdocs will use these skills to solve practical problems for companies exploring for oil, building imaging devices, or involved in remote sensing.Problems like those described above, but with over-determined data, where the unknown function depends on fewer variables than the data, have received a lot of attention. The PI focuses on the less studied formally determined problems where the unknown function depends on the same number of variables as the data. Such problems, in two or more space dimensions, are harder but very useful in situations where data acquisition is difficult, and their investigation is one of the important challenges in the field. This project will study the following problems in three space dimensions: the fixed angle scattering problem, the backscattering problem, the point source problem, and the incoming spherical wave problem. Recently, using an adaptation of the Bukhgeim-Klibanov method, the PI and his collaborators proved stability for the fixed angle scattering problem for coefficients which are even in one of the variables and proved uniqueness for the problem of recovering a coefficient given data from the point source problem as well as the incoming spherical wave problem. This project aims at further adapting the Bukhgeim-Klibanov method to use Robbiano-Tataru type Carleman estimates and unique continuation arguments to tackle the proposed problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在石油和天然气勘探、绘制行星内部地图或医学成像等领域,人们可以确定物体内部的性质,例如地球内部石油/天然气矿床的位置、确定行星内部组成的特征,或确定人体内部肿块是否癌变。由于在这些情况下钻孔或切割通常是昂贵的或不可行的,因此可以通过非侵入性方法探测这些物体,例如在物体边界上产生声波。期望的是,物体的内部组成将影响入射波和响应波,也只在物体的边界上测量,提供了一个进入物体内部的数学窗口。首席研究员(PI)将研究这种成像技术背后的数学原理。此外,PI将通过迷你课程、研讨会、个人对话和讲习班来培训这类数学的研究生和博士后。其中一些学生和博士后将利用这些技能为勘探石油、建造成像设备或涉及遥感的公司解决实际问题。像上面描述的问题,但与过度确定的数据,其中未知函数依赖的变量比数据少,已经得到了很多关注。PI关注较少研究的正式确定问题,其中未知函数依赖于与数据相同数量的变量。这类问题在两个或多个空间维度上比较困难,但在数据采集困难的情况下非常有用,对它们的研究是该领域的重要挑战之一。本项目将在三个空间维度上研究以下问题:定角散射问题、后向散射问题、点源问题和入射球面波问题。最近,PI和他的合作者使用了Bukhgeim-Klibanov方法的一种改进,证明了固定角散射问题的稳定性,并且证明了从点源问题和入射球面波问题中恢复给定系数的问题的唯一性。本项目旨在进一步调整Bukhgeim-Klibanov方法,使用Robbiano-Tataru型Carleman估计和唯一延拓论证来解决所提出的问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Point sources and stability for an inverse problem for a hyperbolic PDE with space and time dependent coefficients
具有空间和时间相关系数的双曲偏微分方程反问题的点源和稳定性
- DOI:10.1016/j.jde.2022.10.025
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Krishnan, Venkateswaran P.;Rakesh;Senapati, Soumen
- 通讯作者:Senapati, Soumen
Fixed Angle Inverse Scattering for Almost Symmetric or Controlled Perturbations
- DOI:10.1137/20m1319309
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Rakesh;M. Salo
- 通讯作者:Rakesh;M. Salo
Stability for a Formally Determined Inverse Problem for a Hyperbolic PDE with Space and Time Dependent Coefficients
具有空间和时间相关系数的双曲偏微分方程形式确定反问题的稳定性
- DOI:10.1137/21m1400596
- 发表时间:2021
- 期刊:
- 影响因子:2
- 作者:Krishnan, Venkateswaran P.;Rakesh, Rakesh;Senapati, Soumen
- 通讯作者:Senapati, Soumen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rakesh Rakesh其他文献
Innovative Approaches for Characterizing Chlorantraniliprole and Its Metabolites in Soil, Water and Plants
表征土壤、水和植物中氯虫苯甲酰胺及其代谢物的创新方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rakesh Rakesh;H. Inani - 通讯作者:
H. Inani
Smart Systems and IoT: Innovations in Computing
智能系统和物联网:计算创新
- DOI:
10.1007/978-981-13-8406-6 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Arun K. Somani;Rajveer Singh;Ankit Mundra;S. Srivastava;Vivek Kumar Verma;.. .. .. .. .. D. Kumar;Nehal Patel;Radhika Patel;Jenny Kasudiya;Ankit Bhavsar;Harshal A. Arolkar;Tigilu Mitiku;M. S. Manshahia;Rutba Mufti;Kartike Khatri;Sumit Bhardwaj;Punit Gupta;Pankaj Kumar;Sidhartha Barui;Deepanwita Das;Mangala N. Sumedh;Sneha Srinivasan;S. Basavaraju;Nidhi Gangrade;Nirmal Choudhary;K. K. Bharadwaj;Abdul Rehman;Nitin Khan;Rakesh Rakesh;Matam;Dinesh Siddhant Goswami;Singh Shekhawat;Neetu Faujdar;Nitin Rakesh;P. Rohatgi;Karan Gupta;G. Chauhan;Y. Meena;Nidhi Gupta;Deepak Vaswani;Kuldeep Singh;Sakar Gupta;Sunita Gupta;Amit Deepak Soni;Kumar Behera;Dheeraj Sharma;M. Aslam;Shivendra Yadav;Nirav Bhatt;Amit Thakkar;Nikita Bhatt;Purvi Prajapati;Neeru Meena;Buddha Singh;Laxmi Chaudhary;Deepak Kumar - 通讯作者:
Deepak Kumar
Rakesh Rakesh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rakesh Rakesh', 18)}}的其他基金
The inverse backscattering problem and the inverse fixed angle scattering problem
逆后向散射问题和逆固定角散射问题
- 批准号:
2307800 - 财政年份:2023
- 资助金额:
$ 11.62万 - 项目类别:
Standard Grant
Inverse Problems for the Wave Equation
波动方程的反问题
- 批准号:
1615616 - 财政年份:2016
- 资助金额:
$ 11.62万 - 项目类别:
Standard Grant
Formally determined inverse problems for hyperbolic PDEs
双曲偏微分方程的正式确定的反问题
- 批准号:
1312708 - 财政年份:2013
- 资助金额:
$ 11.62万 - 项目类别:
Standard Grant
Inversion from Time Domain Backscattering Data for the Wave Equation
时域后向散射数据反演波动方程
- 批准号:
0907909 - 财政年份:2009
- 资助金额:
$ 11.62万 - 项目类别:
Standard Grant
相似国自然基金
新型简化Inverse Lax-Wendroff方法的发展与应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
- 批准号:11801143
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Inverse problems for degenerate hyperbolic partial differential equations on manifolds
流形上简并双曲偏微分方程的反问题
- 批准号:
22K20340 - 财政年份:2022
- 资助金额:
$ 11.62万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Inverse problems for hyperbolic partial differential equations on Lorentzian manifolds
洛伦兹流形上双曲偏微分方程的反问题
- 批准号:
20J11497 - 财政年份:2020
- 资助金额:
$ 11.62万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Inverse problems for hyperbolic partial differential equations
双曲偏微分方程的反问题
- 批准号:
EP/P01593X/1 - 财政年份:2017
- 资助金额:
$ 11.62万 - 项目类别:
Fellowship
Hyperbolic Inverse Problems in Random Environments
随机环境中的双曲反问题
- 批准号:
1510429 - 财政年份:2015
- 资助金额:
$ 11.62万 - 项目类别:
Standard Grant
Formally determined inverse problems for hyperbolic PDEs
双曲偏微分方程的正式确定的反问题
- 批准号:
1312708 - 财政年份:2013
- 资助金额:
$ 11.62万 - 项目类别:
Standard Grant
REU Site- Research Experience in Hyperbolic Geometry, Number Theory, and Inverse Problems
REU网站-双曲几何、数论和反问题的研究经验
- 批准号:
0097804 - 财政年份:2001
- 资助金额:
$ 11.62万 - 项目类别:
Continuing Grant
Theoretical and Numerical Research of Optimal Control and Inverse Problems for Nonlinear Elliptic and Hyperbolic Distributed Parameter Systems
非线性椭圆和双曲分布参数系统最优控制与反问题的理论与数值研究
- 批准号:
09640186 - 财政年份:1997
- 资助金额:
$ 11.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inverse Problems for Hyperbolic Equations
双曲方程的反问题
- 批准号:
9709637 - 财政年份:1997
- 资助金额:
$ 11.62万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Problems for Hyperbolic Partial Differential Equations
数学科学:双曲偏微分方程的反问题
- 批准号:
9404283 - 财政年份:1994
- 资助金额:
$ 11.62万 - 项目类别:
Continuing Grant