Optimal Control in Coupled Systems with Moving Interfaces
具有移动界面的耦合系统的最优控制
基本信息
- 批准号:1312801
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project addresses the control of turbulence inside fluid flow in the case of free boundary interaction between a viscous fluid and a moving and deforming elastic body. Reducing and controlling turbulence flow is particularly relevant in the design of small-scale unmanned aircrafts and morphing aircraft wings (e.g. improving the flight of a robobee), and is also of great interest in the medical community (for example, blood flow in a stenosed or stented artery). The proposed problem presents new challenges since it treats the case of a moving and deforming elastic body coupled with a viscous fluid, building on the existing literature on control problems in fluid-structure interactions, which is predominantly focused on the assumption of small but rapid oscillations of the solid body, and therefore assumes that the common interface is static. Due to the presence of the free boundary and the fully nonlinear coupled system, the issue of existence and uniqueness of an optimal control will involve strategies from sensitivity and shape differentiability analysis, on top of techniques from control theory of partial differential equations and well-posedness analysis for fluid-structure interactions. Therefore, the project will be of interest to a broad mathematical and engineering audience. Mathematically, the proposed research will lead to: (i) the construction of quasilinear theory arising in Navier-Stokes equations coupled with waves, (ii) the development of the theory of strong shape derivatives for hyperbolic problems with non-smooth Neumann boundary conditions, which is challenging due to the failure of the Lopatinski condition, and (iii) the study of well-posedness analysis for the first linear model of fluid-elasticity interaction that takes into account the common interface and its curvatures, which are critical for a correct physical interpretation of the coupling. The project will launch new research in the field, since the approach and the techniques introduced for the minimization of drag in the fluid-elasticity interaction can be adjusted and used to investigate inverse or control problems in many other free boundary coupled physical systems, and with different types of controls. The principal investigator has partnered with the North Carolina Museum of Natural Sciences in an effort to create a "Math Day at the Museum", in order to promote and present her research to a broad audience, showcase students' research through posters and presentations, and encourage the participation of women and minorities in the study of math. During these events, the principal investigator will give public presentations on her research, develop and set up demonstrations of real world phenomena illustrating applications of partial differential equations and their control. In addition, the principal investigator plans to promote women and minorities in math, by involving several student groups from North Carolina State University, including the Association for Women in Mathematics, Women in Science and Engineering, and the Society of African American Physical and Mathematical Sciences.
在粘性流体与运动和变形的弹性体之间存在自由边界相互作用的情况下,本项目致力于控制流体内部的湍流流动。减少和控制湍流在小型无人机和变形飞机机翼的设计中尤其重要(例如,改进RoboBee的飞行),也是医学界非常感兴趣的(例如,狭窄或支架动脉中的血液流动)。提出的问题提出了新的挑战,因为它处理了运动和变形的弹性体与粘性流体耦合的情况,建立在现有的流固相互作用控制问题的文献基础上,这些文献主要集中在固体的小但快速振荡的假设上,因此假设公共界面是静态的。由于自由边界和完全非线性耦合系统的存在,最优控制的存在和唯一性问题将涉及到灵敏度和形状可微性分析的策略,以及偏微分方程控制理论和流固耦合适定性分析的方法。因此,该项目将引起广大数学和工程学观众的兴趣。在数学上,拟议的研究将导致:(I)建立与波耦合的Navier-Stokes方程的拟线性理论;(Ii)发展具有非光滑Neumann边界条件的双曲型问题的强形状导数理论,由于Lopatinski条件的失败,这是具有挑战性的;以及(Iii)考虑公共界面及其曲率的第一个线性流体-弹性相互作用模型的适定性分析的研究,这对于正确的物理解释耦合是至关重要的。该项目将在该领域开展新的研究,因为在流体-弹性相互作用中引入的最小化阻力的方法和技术可以调整,并用于研究许多其他自由边界耦合物理系统中的逆问题或控制问题,并具有不同类型的控制。这位首席研究人员与北卡罗来纳州自然科学博物馆合作,努力创建“博物馆数学日”,以向广大观众宣传和展示她的研究,通过海报和演示展示学生的研究,并鼓励女性和少数族裔参与数学研究。在这些活动期间,首席研究员将公开介绍她的研究,开发和建立现实世界现象的演示,说明偏微分方程及其控制的应用。此外,首席研究员计划让北卡罗来纳州立大学的几个学生团体参与进来,促进数学领域的妇女和少数族裔,包括数学妇女协会、科学和工程妇女协会以及非裔美国人物理和数学科学学会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lorena Bociu其他文献
Piecewise regular solutions to scalar balance laws with singular nonlocal sources
具有奇异非局部源的标量守恒律的分段正则解
- DOI:
10.1016/j.jde.2024.07.004 - 发表时间:
2024-11-15 - 期刊:
- 影响因子:2.300
- 作者:
Lorena Bociu;Evangelia Ftaka;Khai T. Nguyen;Jacopo Schino - 通讯作者:
Jacopo Schino
Lorena Bociu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lorena Bociu', 18)}}的其他基金
Collaborative Research: Analysis and Control in Multi-Scale Interface Coupling between Deformable Porous Media and Lumped Hydraulic Circuits
合作研究:可变形多孔介质与集总液压回路多尺度界面耦合分析与控制
- 批准号:
2108711 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CAREER: Control and Sensitivity Analysis for Fluid-Elasticity Interactions and Fluid-Solid Mixtures
职业:流体-弹性相互作用和流体-固体混合物的控制和灵敏度分析
- 批准号:
1555062 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
International Research Fellowship Program: Hadamard Wellposedness and Asymptotic Stability of Finite Energy Solutions for a Structural Acoustic Interaction Modeled by Nonlinear
国际研究奖学金计划:非线性结构声相互作用建模的有限能量解的哈达玛适定性和渐近稳定性
- 批准号:
0802187 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
Ultrasensitive mass sensing utilizing weakly-coupled micro resonators' mode localization, with nonlinear feedback control
利用弱耦合微谐振器的模式定位和非线性反馈控制的超灵敏质量传感
- 批准号:
22KJ0428 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Control of the electron-lattice strongly-coupled system by ultrahigh magnetic fields
超高磁场对电子晶格强耦合系统的控制
- 批准号:
23H01117 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Control Theory, Qualitative Analysis, and Approximation of Coupled Structure-Flow Interaction Systems
耦合结构-流相互作用系统的控制理论、定性分析和逼近
- 批准号:
2348312 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
High-accurate relative position and rotation control of multiple satellites considering orbit-attitude coupled dynamics for space interferometry
空间干涉测量中考虑轨道姿态耦合动力学的多卫星高精度相对位置和旋转控制
- 批准号:
22K18856 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Connected and autonomous vehicles-based signal vehicle coupled control
基于联网和自动驾驶车辆的信号车辆耦合控制
- 批准号:
577603-2022 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Alliance Grants
Spiraling Into Control: Ultra High-Impedance Superconducting Resonators for Strongly-Coupled Spin-Cavity QED
螺旋进入控制:用于强耦合自旋腔 QED 的超高阻抗超导谐振器
- 批准号:
2210309 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
CAREER: Simultaneous and Independent Control of Nanostructured Objects Through the Use of Coupled External Electric Fields
职业:通过使用耦合外部电场同时独立控制纳米结构物体
- 批准号:
2146056 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
ERI: Shear-Flow-Driven Coupled Mechanisms as a Means to Actively Control Particle Dissolution
ERI:剪切流驱动耦合机制作为主动控制颗粒溶解的手段
- 批准号:
2138740 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Exploring Coupled Physical, Biological and Chemical Processes that Control Lead Fate and Transport through Plastic Plumbing Materials
探索通过塑料管道材料控制铅的归宿和运输的物理、生物和化学耦合过程
- 批准号:
2309475 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
GOALI: Thermo-catalytic Decomposition of Natural Gas Coupled with Regeneration: Nanostructure Connections and Control
GOALI:天然气热催化分解与再生:纳米结构连接和控制
- 批准号:
2228140 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant