CAREER: Simultaneous and Independent Control of Nanostructured Objects Through the Use of Coupled External Electric Fields

职业:通过使用耦合外部电场同时独立控制纳米结构物体

基本信息

  • 批准号:
    2146056
  • 负责人:
  • 金额:
    $ 58.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development Program (CAREER) project will support research that will enable the large-scale manipulation of nano-sized objects by using a shared external electric field, and, as such, it will have strong potential to impact important applications in the development of new materials, drug-delivery and medical devices, and electronics. Nanomanipulation enables the flexible maneuvering and precise positioning of nanostructures in both prototyping and assembling nanoscale devices. However, current nanomanipulation techniques are not well-suited for independently manipulating large numbers of nanoscale objects precisely and reliably. Overcoming existing barriers will allow the efficient manufacture of inexpensive functional nanodevices. This award will generate the fundamental knowledge, methodologies, and tools for large-volume manipulation of a broad class of micro- and nano-scale objects, by focusing on using coupled external electric fields to perform nanomanipulation in three-dimensional microfluidic environments. Additionally, this research will lead to efficient and inexpensive neuromorphic nanowire networks that mimic the behaviors exhibited by biological neurons. These advances could revolutionize neuromorphic computing as applied to next-generation artificial intelligence hardware, making the nation more competitive in the field of artificial intelligence. The research will be integrated with education at the K-12, undergraduate, graduate, and lifelong learning levels. The outreach activities will prime the STEM pipeline and inspire women and underrepresented minorities towards STEM careers.The ability to move and control large numbers of micro- and nano-scale objects has important industrial and biomedical applications. However, automation has been mostly restricted to moving a limited number of objects in small workspace volumes. This research aims to discover motion-control frameworks that serve to simultaneously, but independently, manipulate many nano-sized objects under coupled external electric fields. The research objectives are to (1) design an adaptive robust ensemble control for great quantities of agents in a complex three-dimensional microfluidic environment under common electric fields; (2) analyze the controllability and manipulability of the system to identify the most effective electrode pattern and plan efficient trajectories of individual objects; and (3) investigate control schemes that enable functional nanodevice assembly with applications to next-generation neuromorphic computing. In the long term, this research will support engineering tools for automated microscale and nanoscale bio-factories through the manipulation of large volumes of objects, which will have significant impacts on target-oriented drug delivery and precision medicine engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这一学院早期职业发展计划(CALEAR)项目将支持通过使用共享外部电场来大规模操纵纳米物体的研究,因此,它将具有强大的潜力,将影响新材料、药物输送、医疗器械和电子产品开发中的重要应用。纳米操纵使纳米结构能够在原型和组装纳米级设备时进行灵活的操作和精确的定位。然而,目前的纳米操纵技术并不能很好地独立、精确和可靠地操纵大量纳米级物体。克服现有的障碍将允许高效地制造廉价的功能纳米设备。该奖项将产生基础知识、方法和工具,通过在三维微流体环境中使用耦合外部电场来执行纳米操纵,从而实现对广泛类别的微米和纳米尺度物体的大体积操纵。此外,这项研究将导致高效和廉价的神经形态纳米线网络,模拟生物神经元的行为。这些进展可能会使应用于下一代人工智能硬件的神经形态计算发生革命性变化,使美国在人工智能领域更具竞争力。这项研究将与K-12、本科生、研究生和终身学习水平的教育相结合。这些外联活动将为STEM渠道做好准备,并激励妇女和代表性不足的少数群体投身STEM事业。移动和控制大量微米和纳米级物体的能力具有重要的工业和生物医学应用。然而,自动化主要限于在较小的工作区体积中移动有限数量的对象。这项研究的目的是发现在耦合的外部电场下同时但独立地操纵许多纳米尺寸物体的运动控制框架。研究的目标是:(1)设计一种在复杂的三维微流控环境中,在普通电场作用下的自适应鲁棒集成控制;(2)分析系统的可控性和可操作性,以识别最有效的电极模式并规划单个物体的有效轨迹;(3)研究能够实现功能纳米器件组装的控制方案,并将其应用于下一代神经形态计算。从长远来看,这项研究将通过操纵大量物体来支持自动化微米和纳米生物工厂的工程工具,这将对靶向药物输送和精确医学工程产生重大影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Informed Sampling-Based Motion Planning for Manipulating Multiple Micro Agents Using Global External Electric Fields
使用全局外部电场操纵多个微代理的基于知情采样的运动规划
3D Pose Identification of Moving Micro- and Nanowires in Fluid Suspensions under Bright-Field Microscopy
明场显微镜下流体悬浮液中移动微米线和纳米线的 3D 位姿识别
Ensemble Control for Manipulating Multiple Nanowires in Fluid Suspension Using External Electrical Fields
使用外部电场操纵流体悬浮液中多根纳米线的整体控制
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kaiyan Yu其他文献

Time-optimal simultaneous motion planning and manipulation of multiple nanowires under electric-fields in fluid suspension
流体悬浮液电场下多根纳米线的时间最优同步运动规划和操纵
Electrophoresis-Based Manipulation of Micro- and Nanoparticles in Fluid Suspensions
Function-on-Function Regression for Trajectory Prediction of Small-Scale Particles towards Next-generation Neuromorphic Computing
用于下一代神经形态计算的小尺度粒子轨迹预测的函数对函数回归
Motion control of autonomous aggressive vehicle maneuvers
自主攻击性车辆操纵的运动控制
Trajectory planning for visual servoing with some constraints
具有一定约束的视觉伺服轨迹规划

Kaiyan Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

I-Corps: Translation Potential of Simultaneous Musculoskeletal Assessment with Real-Time Ultrasound
I-Corps:实时超声同步肌肉骨骼评估的转化潜力
  • 批准号:
    2413735
  • 财政年份:
    2024
  • 资助金额:
    $ 58.86万
  • 项目类别:
    Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 58.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Simultaneous treatment technology for high-concentration NOx, SOx, and particulate matter from ships by plasma hybrid cleaning method
等离子混合清洗法同时处理船舶高浓度NOx、SOx和颗粒物技术
  • 批准号:
    23H01626
  • 财政年份:
    2023
  • 资助金额:
    $ 58.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase I: Simultaneous Transmit-Receive and Full-Duplex Millimeter-Wave Massive Multiple-Input and Multiple-Output (MIMO) Systems
SBIR 第一阶段:同时发送-接收和全双工毫米波大规模多输入多输出 (MIMO) 系统
  • 批准号:
    2322297
  • 财政年份:
    2023
  • 资助金额:
    $ 58.86万
  • 项目类别:
    Standard Grant
CRISPR Microfluidic Array for Simultaneous Multiplexed Sensing of Proteins and miRNAs
用于同时多重检测蛋白质和 miRNA 的 CRISPR 微流体阵列
  • 批准号:
    2231490
  • 财政年份:
    2023
  • 资助金额:
    $ 58.86万
  • 项目类别:
    Continuing Grant
Challenge to create multigene families by simultaneous induction of tandem repeat expansion and mutation
通过同时诱导串联重复扩增和突变来创建多基因家族的挑战
  • 批准号:
    23K14172
  • 财政年份:
    2023
  • 资助金额:
    $ 58.86万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Simultaneous measurement of diameters and film thickness in foam via fiber-optic interference spectral probe
通过光纤干涉光谱探头同时测量泡沫中的直径和薄膜厚度
  • 批准号:
    23K17727
  • 财政年份:
    2023
  • 资助金额:
    $ 58.86万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Eleprep: Developing a Modular Electrochemical-Microfluidic Biosensor for Simultaneous Detection of Seven Foodborne Pathogens
Eleprep:开发模块化电化学微流体生物传感器,用于同时检测七种食源性病原体
  • 批准号:
    23K19227
  • 财政年份:
    2023
  • 资助金额:
    $ 58.86万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Identifying neurons for interoception using simultaneous profiling of activity- and projection- specific populations
使用活动和投射特定群体的同步分析来识别用于内感受的神经元
  • 批准号:
    10687590
  • 财政年份:
    2023
  • 资助金额:
    $ 58.86万
  • 项目类别:
varCUT&Tag: A Method for Simultaneous Identification and Characterization of Sequence Variants in Regulatory Elements and Genes
可变剪切
  • 批准号:
    10662799
  • 财政年份:
    2023
  • 资助金额:
    $ 58.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了