Stochastic Modeling and Inference of Gene Networks
基因网络的随机建模和推理
基本信息
- 批准号:1312926
- 负责人:
- 金额:$ 21.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The environment within living cells is incredibly noisy with biochemical species randomly bumping and reacting with each other. This inherent probabilistic nature along with low population counts of cellular species creates considerable stochastic fluctuations in protein copy numbers over time inside individual cells. Increasing evidence suggests that this stochastic dynamics plays important functional roles within cells. Moreover, many diseased states have been attributed to elevated noise levels in specific proteins. Stochastic analysis of biochemical processes relies heavily on Monte Carlo simulation techniques that come at a significant computational cost. In addition, these techniques do not provide closed-form solutions that enable a systematic understanding of how stochastic variability is regulated in these systems. This project will overcome these challenges by developing computationally tractable methodologies based on moment closure schemes for studying stochastic dynamics of gene regulatory networks. Various analytical approximations that relate statistical properties of the system to biologically relevant parameters will be investigated. Far from being a hindrance, signatures of protein noise levels can be informative of the underlying gene network topology. This project will build mathematical techniques that harness quantitative measurements of stochasticity in protein levels for inferring regulatory interactions between genes and proteins.Biological data is being collected at a rapid rate and innovative methods for analyzing data are critically needed. Advances in experimental techniques allow measurements of fluctuations in protein levels in individual cells, which carry useful information to probe interactions between genes and proteins. In this project, tools exploiting statistical properties of these fluctuations to characterize cellular processes will be developed and will be made available for the broad scientific community to use. Stochastic variability in protein levels has been implicated in bacterial antibiotic resistance, mutation-independent selection of tumors and driving pathogenic human viruses, e.g., HIV, into a drug-resistant dormant state. This research will improve the characterizations of gene networks underlying these disease systems and thus this research will have a broader impact on medicine. Many of the results of this project will be incorporated into various courses offered across different departments providing interdisciplinary training and research experience to students at the interface of mathematical and biological sciences.
活细胞内的环境非常嘈杂,生化物质彼此随机碰撞和反应。这种固有的概率性质以及细胞物种的低种群计数导致单个细胞内蛋白质拷贝数随时间的推移产生相当大的随机波动。越来越多的证据表明,这种随机动力学在细胞内发挥着重要的功能作用。此外,许多疾病状态归因于特定蛋白质的噪音水平升高。生化过程的随机分析在很大程度上依赖于蒙特卡罗模拟技术,但计算成本很高。此外,这些技术不提供封闭式解决方案,无法系统地理解这些系统中如何调节随机变异性。该项目将通过开发基于矩闭合方案的计算易于处理的方法来克服这些挑战,用于研究基因调控网络的随机动力学。将研究将系统的统计特性与生物学相关参数联系起来的各种分析近似。蛋白质噪声水平的特征非但不会成为障碍,反而可以为潜在的基因网络拓扑提供信息。该项目将建立数学技术,利用蛋白质水平随机性的定量测量来推断基因和蛋白质之间的调控相互作用。生物数据正在快速收集,迫切需要用于分析数据的创新方法。实验技术的进步允许测量单个细胞中蛋白质水平的波动,这携带有用的信息来探测基因和蛋白质之间的相互作用。在该项目中,将开发利用这些波动的统计特性来表征细胞过程的工具,并将供广大科学界使用。蛋白质水平的随机变异与细菌抗生素耐药性、肿瘤的突变独立选择以及驱动人类致病病毒(例如艾滋病毒)进入耐药休眠状态有关。这项研究将改善这些疾病系统背后的基因网络的特征,因此这项研究将对医学产生更广泛的影响。该项目的许多成果将被纳入不同部门提供的各种课程中,为学生提供数学和生物科学交叉学科的跨学科培训和研究经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abhyudai Singh其他文献
Optimal multi-drug approaches for reduction of the latent pool in HIV
减少艾滋病毒潜伏池的最佳多药方法
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
C. A. Vargas;L. Cannon;Abhyudai Singh;R. Zurakowski - 通讯作者:
R. Zurakowski
Cell size statistics in cell lineages and population snapshots with different growth regimes and division strategies
具有不同生长方式和分裂策略的细胞谱系和群体快照中的细胞大小统计
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Niccoló Totis;César Nieto;Armin Küper;C. A. Vargas;Abhyudai Singh;S. Waldherr - 通讯作者:
S. Waldherr
Optimal regulation of protein degradation to schedule cellular events with precision
蛋白质降解的最佳调节以精确安排细胞事件
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
K. Ghusinga;Abhyudai Singh - 通讯作者:
Abhyudai Singh
Xrn1 influences RNA pol II-dependent transcription elongation rates across the yeast genome and this control is particularly relevant for late elongation of regulatory genes
Xrn1 影响整个酵母基因组中 RNA pol II 依赖性转录延伸率,这种控制与调节基因的后期延伸特别相关
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Victoria Begley;A. Jordán;X. Peñate;A. I. Garrido;Drice Challal;A. Cuevas;A. Mitjavila;Mara Barucco;G. Gutiérrez;Abhyudai Singh;P. Alepúz;F. Navarro;D. Libri;José E. Pérez;S. Chávez - 通讯作者:
S. Chávez
Scaling of stochasticity in gene cascades
基因级联中随机性的缩放
- DOI:
10.1109/acc.2008.4586914 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Abhyudai Singh;J. Hespanha - 通讯作者:
J. Hespanha
Abhyudai Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abhyudai Singh', 18)}}的其他基金
Stochastic inference and control of complex biological networks
复杂生物网络的随机推理和控制
- 批准号:
1711548 - 财政年份:2017
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Stochastic processes with heavy tails and temporal dependence: modeling, probabilistic properties and statistical inference
具有重尾和时间依赖性的随机过程:建模、概率属性和统计推断
- 批准号:
356036-2013 - 财政年份:2017
- 资助金额:
$ 21.66万 - 项目类别:
Discovery Grants Program - Individual
Stochastic processes with heavy tails and temporal dependence: modeling, probabilistic properties and statistical inference
具有重尾和时间依赖性的随机过程:建模、概率属性和统计推断
- 批准号:
356036-2013 - 财政年份:2016
- 资助金额:
$ 21.66万 - 项目类别:
Discovery Grants Program - Individual
Stochastic processes with heavy tails and temporal dependence: modeling, probabilistic properties and statistical inference
具有重尾和时间依赖性的随机过程:建模、概率属性和统计推断
- 批准号:
356036-2013 - 财政年份:2015
- 资助金额:
$ 21.66万 - 项目类别:
Discovery Grants Program - Individual
Stochastic processes with heavy tails and temporal dependence: modeling, probabilistic properties and statistical inference
具有重尾和时间依赖性的随机过程:建模、概率属性和统计推断
- 批准号:
356036-2013 - 财政年份:2014
- 资助金额:
$ 21.66万 - 项目类别:
Discovery Grants Program - Individual
Stochastic processes with heavy tails and temporal dependence: modeling, probabilistic properties and statistical inference
具有重尾和时间依赖性的随机过程:建模、概率属性和统计推断
- 批准号:
356036-2013 - 财政年份:2013
- 资助金额:
$ 21.66万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modeling and statistical inference
随机建模和统计推断
- 批准号:
5724-2006 - 财政年份:2010
- 资助金额:
$ 21.66万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modeling and statistical inference
随机建模和统计推断
- 批准号:
5724-2006 - 财政年份:2009
- 资助金额:
$ 21.66万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modeling and statistical inference
随机建模和统计推断
- 批准号:
5724-2006 - 财政年份:2008
- 资助金额:
$ 21.66万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modeling and statistical inference
随机建模和统计推断
- 批准号:
5724-2006 - 财政年份:2007
- 资助金额:
$ 21.66万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modeling and statistical inference
随机建模和统计推断
- 批准号:
5724-2006 - 财政年份:2006
- 资助金额:
$ 21.66万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




