Stochastic inference and control of complex biological networks
复杂生物网络的随机推理和控制
基本信息
- 批准号:1711548
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Living cells encode complex and dynamic networks of interconnected biomolecular components that orchestrate diverse life processes. Unlike electrical circuits, these networks consist of biochemical species (genes, proteins, RNAs, etc.) that interact and regulate each other via chemical reactions. A holistic understanding of how biomolecular networks process information for cellular decision-making will have tremendous long-term impact on human health. For example, a systems-level deciphering of biomolecular networks will fundamentally transform our knowledge of aberrant regulation driving diseased states, and will lead to novel ways of finding biomarkers and drug targets that take the network dynamics into account. Moreover, designing and rewiring of networks using systems approaches will open doors for different applications, such as, production of biofuels and therapeutics. To facilitate these transformations, this project aims to build scalable mathematical tools for modeling, analysis, inference and control of biological networks.Measurements inside individual cells reveal biological networks with rich stochastic dynamics, owing to the inherent probabilistic nature of biochemical processes. The intellectual merit lies in modeling of biomolecular networks via a Stochastic Hybrid Systems (SHS) framework. Combining tools from control theory, dynamical systems and random processes, the project will develop computationally tractable methods for analyzing deterministic and stochastic dynamics of complex biomolecular systems. These methods will improve computational efficiency of predicting network dynamics by orders of magnitude as compared to traditionally used Monte Carlo simulation techniques. Analysis tools will be used to explore designs of feedback and feedforward loops in biomolecular systems that allow for systematic manipulation of network activity, for example, controlling fluctuations in the level of a specific protein embedded in a larger network. Accurate methods for predicting stochastic dynamics also motivate an intriguing inference problem of learning about the underlying network architecture from measured joint fluctuations in the network components. Advances in single-cell technologies enable precise quantitative measurements of protein copy numbers inside individual cells over time. Motivated by increasing availability of such measurements, the project will build inference methods for improved characterization and reverse engineering of network interactions from time-series measurements of protein levels. In terms of broader impact, the project tools will be applied to study diverse biological pathways in close collaborations with experimental researchers in the life sciences. These include regulatory networks underlying several medically important systems, such as, cell-fate regulation in the human immunodeficiency virus (HIV), and nongenetic drug resistance in cancer cells. Finally, courses applying systems and control concepts to biological networks will be developed for both students and professionals from local industry.
活细胞编码相互连接的生物分子组件的复杂和动态网络,这些组件协调不同的生命过程。与电路不同,这些网络由生物化学物质(基因、蛋白质、RNA等)组成。它们通过化学反应相互作用和调节。全面了解生物分子网络如何处理细胞决策信息将对人类健康产生巨大的长期影响。例如,生物分子网络的系统级破译将从根本上改变我们对异常调节驱动疾病状态的认识,并将导致寻找生物标志物和药物靶点的新方法,这些方法将网络动态考虑在内。此外,使用系统方法设计和重新连接网络将为不同的应用打开大门,例如生物燃料和治疗剂的生产。为了促进这些转变,该项目旨在建立可扩展的数学工具,用于建模,分析,推理和控制生物网络。单个细胞内的测量揭示了生物网络具有丰富的随机动力学,这是由于生物化学过程固有的概率性质。 智能的优点在于通过随机混合系统(SHS)框架的生物分子网络建模。结合控制理论,动力系统和随机过程的工具,该项目将开发用于分析复杂生物分子系统的确定性和随机动力学的计算方法。这些方法将提高预测网络动态的计算效率的数量级相比,传统上使用的蒙特卡罗模拟技术。分析工具将用于探索生物分子系统中反馈和前馈回路的设计,这些系统允许系统地操纵网络活动,例如,控制嵌入较大网络中的特定蛋白质水平的波动。预测随机动态的准确方法也激发了一个有趣的推理问题,即从网络组件的测量联合波动中了解底层网络架构。单细胞技术的进步使得能够随着时间的推移精确定量测量单个细胞内的蛋白质拷贝数。由于这些测量的可用性越来越高,该项目将建立推理方法,以改进蛋白质水平时间序列测量的网络相互作用的表征和逆向工程。就更广泛的影响而言,该项目工具将与生命科学实验研究人员密切合作,用于研究各种生物途径。这些包括几个医学上重要的系统,如人类免疫缺陷病毒(HIV)中的细胞命运调控和癌细胞中的非遗传性耐药性的调控网络。最后,课程应用系统和控制概念的生物网络将开发为学生和专业人士从当地产业。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stochastic analysis of feedback control by molecular sequestration
分子隔离反馈控制的随机分析
- DOI:10.23919/acc.2019.8814973
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Dey, Supravat;Singh, Abhyudai
- 通讯作者:Singh, Abhyudai
Analysis and Control of Stochastic Systems Using Semidefinite Programming Over Moments
使用矩上半定规划的随机系统分析与控制
- DOI:10.1109/tac.2018.2872274
- 发表时间:2019
- 期刊:
- 影响因子:6.8
- 作者:Lamperski, Andrew;Ghusinga, Khem Raj;Singh, Abhyudai
- 通讯作者:Singh, Abhyudai
Proportional and derivative controllers for buffering noisy gene expression
- DOI:10.1109/cdc40024.2019.9030175
- 发表时间:2019-12
- 期刊:
- 影响因子:0
- 作者:Saurabh Modi;Supravat Dey;Abhyudai Singh
- 通讯作者:Saurabh Modi;Supravat Dey;Abhyudai Singh
MicroRNA Based Feedforward Control of Intrinsic Gene Expression Noise
- DOI:10.1109/tcbb.2019.2938502
- 发表时间:2021-01-01
- 期刊:
- 影响因子:4.5
- 作者:Bokes, Pavol;Hojcka, Michal;Singh, Abhyudai
- 通讯作者:Singh, Abhyudai
Driving an Ornstein-Uhlenbeck Process to Desired First-Passage Time Statistics
将 Ornstein-Uhlenbeck 过程驱动到所需的首次通过时间统计
- DOI:10.23919/ecc.2019.8795862
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Ghusinga, Khem Raj;Srivastava, Vaibhav;Singh, Abhyudai
- 通讯作者:Singh, Abhyudai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abhyudai Singh其他文献
Optimal multi-drug approaches for reduction of the latent pool in HIV
减少艾滋病毒潜伏池的最佳多药方法
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
C. A. Vargas;L. Cannon;Abhyudai Singh;R. Zurakowski - 通讯作者:
R. Zurakowski
Cell size statistics in cell lineages and population snapshots with different growth regimes and division strategies
具有不同生长方式和分裂策略的细胞谱系和群体快照中的细胞大小统计
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Niccoló Totis;César Nieto;Armin Küper;C. A. Vargas;Abhyudai Singh;S. Waldherr - 通讯作者:
S. Waldherr
Optimal regulation of protein degradation to schedule cellular events with precision
蛋白质降解的最佳调节以精确安排细胞事件
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
K. Ghusinga;Abhyudai Singh - 通讯作者:
Abhyudai Singh
Xrn1 influences RNA pol II-dependent transcription elongation rates across the yeast genome and this control is particularly relevant for late elongation of regulatory genes
Xrn1 影响整个酵母基因组中 RNA pol II 依赖性转录延伸率,这种控制与调节基因的后期延伸特别相关
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Victoria Begley;A. Jordán;X. Peñate;A. I. Garrido;Drice Challal;A. Cuevas;A. Mitjavila;Mara Barucco;G. Gutiérrez;Abhyudai Singh;P. Alepúz;F. Navarro;D. Libri;José E. Pérez;S. Chávez - 通讯作者:
S. Chávez
Scaling of stochasticity in gene cascades
基因级联中随机性的缩放
- DOI:
10.1109/acc.2008.4586914 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Abhyudai Singh;J. Hespanha - 通讯作者:
J. Hespanha
Abhyudai Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abhyudai Singh', 18)}}的其他基金
Stochastic Modeling and Inference of Gene Networks
基因网络的随机建模和推理
- 批准号:
1312926 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似海外基金
Poly-Matching Causal Inference for Assessing Multiple Acute Medical Managements of Pediatric Traumatic Brain Injuries
用于评估小儿创伤性脑损伤的多种急性医疗治疗的多重匹配因果推理
- 批准号:
10586785 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Genomic, gene-environment and casual inference studies in diabetic complications
糖尿病并发症的基因组、基因环境和随意推理研究
- 批准号:
10639507 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
EAGER: Robust Data-Driven Robotic Manipulation via Bayesian Inference and Passivity-Based Control
EAGER:通过贝叶斯推理和基于被动的控制进行稳健的数据驱动机器人操作
- 批准号:
2330794 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Does Tobacco Social Media Marketing Alter Adolescent Risk Perceptions and Use? Longitudinal Data-Adaptive Estimators and Causal Inference to Enhance Understanding
烟草社交媒体营销是否会改变青少年的风险认知和使用?
- 批准号:
10804979 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
CPS: Small: Neuro-Symbolic Learning and Control with High-Level Knowledge Inference
CPS:小型:具有高级知识推理的神经符号学习和控制
- 批准号:
2304863 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Integration of control and inference in stochastic control
随机控制中控制与推理的集成
- 批准号:
23K03902 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
最適制御理論に基づいた補助情報の観測・生成を伴う集団の最適探索戦略の理論構築
基于最优控制理论的辅助信息观测与生成最优群体搜索策略的理论构建
- 批准号:
22KJ0557 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Learning-Enabled Autonomous Decision-Support for Blood Pressure Management in Hemorrhage Resuscitation via Population-Informed Statistical Inference
通过基于人群的统计推断,为出血复苏中的血压管理提供学习型自主决策支持
- 批准号:
10727737 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Developing causal inference methods to evaluate and leverage spillover effects through social Interactions for designing improved HIV prevention interventions
开发因果推理方法,通过社会互动评估和利用溢出效应,设计改进的艾滋病毒预防干预措施
- 批准号:
10762679 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Developing better modelling inference tools to inform disease control for bovine Tuberculosis using epidemiological and pathogen genetic information.
开发更好的建模推理工具,利用流行病学和病原体遗传信息为牛结核病的疾病控制提供信息。
- 批准号:
BB/W007290/1 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Research Grant