Higher Geometry and Quantum Field Theory-Graduate Students from US Institutions to Participate in GAP 2013, a Summer School in Pittsburgh, PA, in August 2013
高等几何和量子场论 - 来自美国院校的研究生将于 2013 年 8 月参加在宾夕法尼亚州匹兹堡举办的 GAP 2013 暑期学校
基本信息
- 批准号:1313629
- 负责人:
- 金额:$ 0.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is for support of graduate students from US institutions to participate in GAP 2013, a summer school in Pittsburgh, PA, in August 2013. The "Geometry and Physics" (GAP) summer school series has been running successfully for over ten years in various locations around the world. The organizers are planning to host this school in the USA for the first time. The theme of this school will be higher geometry involving some notion of higher categories. Such structures have started to become central in the description of various objects in quantum field theory, string theory and M-theory. For example, stacks and higher gerbes, higher differential characters, and n-bundles, all require categorical notions. The goal of the summer school is to expose students to new and hot ideas of research and provide them the tools needed to attack problems in this area. The main lecturers are leading experts in this area and are excellent expositors. The broader impacts of the activity include training a new generation of students in this interesting and fast-growing area of research. The school has been running outside the US for ten years and the organizers would like to bring it back to the US, thus making it easier for US-based students to benefit from such a useful meeting. The interactions among participants often lead to new collaborations as well as continuation of existing ones. The meeting will be interdisciplinary and the list of speakers will include researchers in various areas such as algebraic topology, differential geometry, algebraic geometry, mathematical physics, and theoretical physics. This will help make more connections among such areas.
该奖项是为了支持来自美国机构的研究生参加2013年8月在宾夕法尼亚州匹兹堡举行的暑期学校GAP 2013。“几何和物理”暑期学校系列已在世界各地成功举办了十多年。主办方计划首次在美国举办这所学校。这所学校的主题将是高等几何涉及一些概念的更高类别。这种结构已经开始成为量子场论、弦论和M理论中描述各种对象的核心。例如,栈和更高的格贝,更高的微分特征和n-丛,都需要范畴概念。暑期学校的目标是让学生接触到新的和热门的研究思想,并为他们提供解决这一领域问题所需的工具。主要讲师都是该领域的顶尖专家,是优秀的讲师。该活动的更广泛影响包括在这一有趣和快速增长的研究领域培训新一代学生。这所学校已经在美国境外运营了十年,组织者希望将其带回美国,从而使美国学生更容易从这样一个有用的会议中受益。参与者之间的互动往往导致新的合作以及现有合作的延续。会议将是跨学科的,发言者名单将包括研究人员在各个领域,如代数拓扑,微分几何,代数几何,数学物理和理论物理。这将有助于在这些地区之间建立更多的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hisham Sati其他文献
Constraints on heterotic M-theory from <em>s</em>-cobordism
- DOI:
10.1016/j.nuclphysb.2011.08.006 - 发表时间:
2011-12-21 - 期刊:
- 影响因子:
- 作者:
Hisham Sati - 通讯作者:
Hisham Sati
Rényi relative entropy based monogamy of entanglement in tripartite systems
基于 Rényi 相对熵的三方系统中纠缠的单配性
- DOI:
10.1038/s41598-024-84153-1 - 发表时间:
2025-01-02 - 期刊:
- 影响因子:3.900
- 作者:
Marwa Mannaï;Hisham Sati;Tim Byrnes;Chandrashekar Radhakrishnan - 通讯作者:
Chandrashekar Radhakrishnan
The M-algebra completes the hierarchy of super-exceptional tangent spaces
- DOI:
10.1016/j.physletb.2024.139199 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Grigorios Giotopoulos;Hisham Sati;Urs Schreiber - 通讯作者:
Urs Schreiber
Flux quantization and the M-theoretic characters
- DOI:
10.1016/j.nuclphysb.2005.09.008 - 发表时间:
2005-11-07 - 期刊:
- 影响因子:
- 作者:
Hisham Sati - 通讯作者:
Hisham Sati
Mysterious Triality and Rational Homotopy Theory
- DOI:
10.1007/s00220-023-04643-7 - 发表时间:
2023-03-06 - 期刊:
- 影响因子:2.600
- 作者:
Hisham Sati;Alexander A. Voronov - 通讯作者:
Alexander A. Voronov
Hisham Sati的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hisham Sati', 18)}}的其他基金
Geometric and Topolocical Structures Related TO M-branes
与 M 膜相关的几何和拓扑结构
- 批准号:
1102218 - 财政年份:2011
- 资助金额:
$ 0.5万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 0.5万 - 项目类别:
Continuing Grant
Number theory and geometry behind quantum interaction models
量子相互作用模型背后的数论和几何
- 批准号:
24K16941 - 财政年份:2024
- 资助金额:
$ 0.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
FET: Small: A triangle of quantum mathematics, computational complexity, and geometry
FET:小:量子数学、计算复杂性和几何的三角关系
- 批准号:
2317280 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
Standard Grant
Bayesian Prediction Theory and Information Geometry for Non-regular and Quantum Statistical Models
非正则和量子统计模型的贝叶斯预测理论和信息几何
- 批准号:
23K11006 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
- 批准号:
2316892 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
Standard Grant
Physics of interaband effects: Viewpoint of quantum geometry and topology
带间效应物理学:量子几何和拓扑的观点
- 批准号:
23K03243 - 财政年份:2023
- 资助金额:
$ 0.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Surfaces and Geometry and Topology of Quantum Link Invariants
量子链接不变量的表面、几何和拓扑
- 批准号:
2244923 - 财政年份:2022
- 资助金额:
$ 0.5万 - 项目类别:
Continuing Grant
Interactions between noncommutative geometry and quantum information
非交换几何与量子信息之间的相互作用
- 批准号:
RGPIN-2022-03373 - 财政年份:2022
- 资助金额:
$ 0.5万 - 项目类别:
Discovery Grants Program - Individual
Geometry Optimization for Classical and Quantum Computing of Molecule Predictions
分子预测的经典和量子计算的几何优化
- 批准号:
572668-2022 - 财政年份:2022
- 资助金额:
$ 0.5万 - 项目类别:
University Undergraduate Student Research Awards
Hyperbolic Geometry and Quantum Invariants
双曲几何和量子不变量
- 批准号:
2203334 - 财政年份:2022
- 资助金额:
$ 0.5万 - 项目类别:
Standard Grant