Hyperbolic Geometry and Quantum Invariants
双曲几何和量子不变量
基本信息
- 批准号:2203334
- 负责人:
- 金额:$ 24.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum physics has profoundly changed the world since 120 years ago. Its impacts on mathematics is also deep and huge. The project aims to relate geometry of 3-dimensional space and quantum physics. The affirmative resolution of the problems will have impact on our understanding of the 3-dimensional universe. The nature of the objects under study is also at the intersection of several different areas of mathematics. The investigator plans on studying all of these aspects, and expects that techniques from each area will shed new light on the other areas involved.The research is centered at the interface of hyperbolic geometry and quantum invariants. The PI’s dual expertise in these two very different fields makes him well prepared to tackle the problems. The project is articulated along three inter-related research themes involving the asymptotics of quantum invariants and their relationship with hyperbolic geometry. Specific goals include: (1) Find an explicit formula of the adjoint twisted Reidemeister torsion of a closed hyperbolic 3-manifold in terms of the length of the edges of a geometric triangulation of the manifold. (2) Attack the Volume Conjecture and the Asymptotic Expansion Conjecture for Reshetikhin-Turaev invariants of closed oriented hyperbolic 3-manifolds and for Turaev-Viro invariants for hyperbolic 3-manifolds with totally geodesic boundary. (3) Study the asymptotics of the quantum invariants of self-homeomorphisms of a surface introduced by Bonahon and Liu, and relate them to the hyperbolic volume of the (3-dimensional) mapping torus of the homeomorphism. This research will be partially conducted with a few collaborators, whose expertise can be an asset to the program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自120年前以来,量子物理学已经深刻地改变了世界。它对数学的影响也是深刻而巨大的。该项目旨在将三维空间的几何学与量子物理学联系起来。这些问题的肯定性解决将影响我们对三维宇宙的理解。研究对象的性质也是数学几个不同领域的交叉点。研究人员计划研究所有这些方面,并期望每个领域的技术将为其他相关领域带来新的启发。研究集中在双曲几何和量子不变量的界面上。PI在这两个非常不同的领域的双重专业知识使他为解决问题做好了充分的准备。该项目沿着三个相互关联的研究主题进行阐述,涉及量子不变量的渐近性及其与双曲几何的关系。具体目标包括:(1)求出闭双曲3-流形的伴随扭Reidemeister挠率关于流形的几何三角剖分的边长的显式公式。(2)讨论了闭定向双曲三维流形的Reshetikhin-Turaev不变量和具有全测地边界的双曲三维流形的Turaev-Viro不变量的体积猜想和渐近展开猜想。(3)研究Bonahon和Liu引入的曲面自同胚的量子不变量的渐近性,并将它们与同胚的(三维)映射环面的双曲体积联系起来.这项研究将部分与少数合作者进行,他们的专业知识可以成为该计划的资产。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Relative Reshetikhin–Turaev Invariants, Hyperbolic Cone Metrics and Discrete Fourier Transforms I
相对 Reshetikhin–Turaev 不变量、双曲锥度量和离散傅里叶变换 I
- DOI:10.1007/s00220-022-04613-5
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Wong, Ka Ho;Yang, Tian
- 通讯作者:Yang, Tian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tian Yang其他文献
Location of a conservative hyperplane for cutting plane methods in disjoint bilinear programming
不相交双线性规划中割平面方法的保守超平面的位置
- DOI:
10.1007/s11590-018-01382-w - 发表时间:
2019-01 - 期刊:
- 影响因子:1.6
- 作者:
Xi Chen;Ji-hong Zhang;Xiao-song Ding;Tian Yang;Jing-yi Qian - 通讯作者:
Jing-yi Qian
Tsinghua facial expression database - A database of facial expressions in Chinese young and older women and men: Development and validation
清华面部表情数据库 - 中国年轻和老年女性和男性的面部表情数据库:开发和验证
- DOI:
10.1371/journal.pone.0231304 - 发表时间:
2020 - 期刊:
- 影响因子:3.7
- 作者:
Yang Tao;Yang Zeyun;Xu Guangzheng;Gao Duoling;Zhang Ziheng;Wang Hui;Liu Shiyu;Han Linfeng;Zhu Zhixin;Tian Yang;Huang Yuqi;Zhao Lei;Zhong Kui;Shi Bolin;Li Juan;Fu Shimin;Liang Peipeng;Banissy Michael J.;Sun Pei - 通讯作者:
Sun Pei
Editorial: non‐viral hepatocellular carcinoma surveillance—an increasingly severe public health issue
社论:非病毒性肝细胞癌监测——一个日益严重的公共卫生问题
- DOI:
10.1111/apt.17116 - 发表时间:
2022 - 期刊:
- 影响因子:7.6
- 作者:
Liyang Sun;Zhenli Li;Tian Yang - 通讯作者:
Tian Yang
Apply Four Laboratory Characteristics to Classify Critical Patients With COVID-19 After Admission
应用四个实验室特征对入院后的 COVID-19 重症患者进行分类
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Anping Guo;Zejian Kuang;Ying Wang;Dongxue Luo;Xiaoying Zheng;Ben;Tian Yang;Ji;Canhong Wen;Haizhu Tan - 通讯作者:
Haizhu Tan
Transient characters of the unity reflection phenomenon in all-dielectric magnetic metamaterials
全介电磁性超材料统一反射现象的瞬态特性
- DOI:
10.1364/osac.1.000634 - 发表时间:
2018-10 - 期刊:
- 影响因子:0
- 作者:
Tian Yang;Xiaobo Wang;Zhifang Zhou;Ji Zhou - 通讯作者:
Ji Zhou
Tian Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tian Yang', 18)}}的其他基金
Conference: Quantum Topology, Quantum Information and connections to Mathematical Physics
会议:量子拓扑、量子信息以及与数学物理的联系
- 批准号:
2350250 - 财政年份:2024
- 资助金额:
$ 24.94万 - 项目类别:
Standard Grant
Quantum Invariants and Geometric Structures
量子不变量和几何结构
- 批准号:
1812008 - 财政年份:2018
- 资助金额:
$ 24.94万 - 项目类别:
Standard Grant
Geometric structures on low-dimensional manifolds
低维流形上的几何结构
- 批准号:
1405066 - 财政年份:2014
- 资助金额:
$ 24.94万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 24.94万 - 项目类别:
Continuing Grant
Number theory and geometry behind quantum interaction models
量子相互作用模型背后的数论和几何
- 批准号:
24K16941 - 财政年份:2024
- 资助金额:
$ 24.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
FET: Small: A triangle of quantum mathematics, computational complexity, and geometry
FET:小:量子数学、计算复杂性和几何的三角关系
- 批准号:
2317280 - 财政年份:2023
- 资助金额:
$ 24.94万 - 项目类别:
Standard Grant
Bayesian Prediction Theory and Information Geometry for Non-regular and Quantum Statistical Models
非正则和量子统计模型的贝叶斯预测理论和信息几何
- 批准号:
23K11006 - 财政年份:2023
- 资助金额:
$ 24.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
- 批准号:
2316892 - 财政年份:2023
- 资助金额:
$ 24.94万 - 项目类别:
Standard Grant
Physics of interaband effects: Viewpoint of quantum geometry and topology
带间效应物理学:量子几何和拓扑的观点
- 批准号:
23K03243 - 财政年份:2023
- 资助金额:
$ 24.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Surfaces and Geometry and Topology of Quantum Link Invariants
量子链接不变量的表面、几何和拓扑
- 批准号:
2244923 - 财政年份:2022
- 资助金额:
$ 24.94万 - 项目类别:
Continuing Grant
Interactions between noncommutative geometry and quantum information
非交换几何与量子信息之间的相互作用
- 批准号:
RGPIN-2022-03373 - 财政年份:2022
- 资助金额:
$ 24.94万 - 项目类别:
Discovery Grants Program - Individual
Geometry Optimization for Classical and Quantum Computing of Molecule Predictions
分子预测的经典和量子计算的几何优化
- 批准号:
572668-2022 - 财政年份:2022
- 资助金额:
$ 24.94万 - 项目类别:
University Undergraduate Student Research Awards
Quantum Integrable Systems and Geometry
量子可积系统和几何
- 批准号:
2203823 - 财政年份:2022
- 资助金额:
$ 24.94万 - 项目类别:
Standard Grant