Deterministic and stochastic magnetization dynamics in thin ferromagnetic films and devices
铁磁薄膜和器件中的确定性和随机磁化动力学
基本信息
- 批准号:1313687
- 负责人:
- 金额:$ 37.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Muratov1313687 Magnetization reversal in thin ferromagnetic films is often mediated by the appearance and motion of domain walls, which are narrow transition regions separating different magnetic domains. Under previous NSF funding, the investigator developed a basic mathematical understanding of Neel walls in arbitrary applied fields and 360-degree walls in the absence of the applied fields in uniaxial materials and studied their role in magnetization reversal in ferromagnetic nanorings, both in the absence and in the presence of small thermal noise. In this project, he further investigates the properties of the domain walls in materials with four-fold magnetocrystalline anisotropy characteristic of materials of technological interest, such as cobalt, and undertakes more detailed modeling, computational, and analytical studies of the magnetization dynamics. In particular, the new models incorporate spin precession, spin torque, and stochastic effects, as well as the effect of the film topography and polycrystalline structure in as-grown ferromagnetic films. The investigator develops new numerical and asymptotic tools to tackle the challenges coming from these new aspects of modeling. As part of the training process, he develops courses in applied sciences and takes part in interdisciplinary training of mathematics and engineering graduate and undergraduate students and postdocs. The project helps foster closer interactions between researchers in applied mathematics and experimental scientists. Thin film ferromagnetic materials are at the core of a large array of data storage applications of modern digital technology. The widespread use of these materials is due to their ability to retain information in the form of distinct magnetization states, without the need of being powered, and the possibility to read and write information in a fast and reliable way. This project is strongly motivated by the efforts to develop a new, universal computer memory based on thin film ferromagnetic materials, the Magnetoresistive Random Access Memory (MRAM). The investigator addresses the questions of feasibility and reliability of the designs that use ferromagnetic nanorings as storage elements. Progress on these problems has high potential impact for the computer industry. In addition, a key aspect of the project is the training of a new generation of applied mathematicians in this highly interdisciplinary area of research.
铁磁薄膜中的磁化反转通常是由畴壁的出现和运动介导的,畴壁是分隔不同磁畴的狭窄过渡区。在之前的NSF资助下,研究者对任意应用场中的尼尔壁和单轴材料中没有应用场的360度壁进行了基本的数学理解,并研究了它们在没有和存在小热噪声的情况下在铁磁纳米结构中的磁化反转中的作用。在这个项目中,他进一步研究了具有四重磁晶各向异性的材料(如钴)的畴壁特性,并对磁化动力学进行了更详细的建模、计算和分析研究。特别地,新模型考虑了自旋进动、自旋力矩、随机效应以及生长铁磁薄膜中薄膜形貌和多晶结构的影响。研究者开发了新的数值和渐近工具来解决来自这些建模新方面的挑战。作为培训过程的一部分,他开发了应用科学课程,并参与了数学和工程研究生、本科生和博士后的跨学科培训。该项目有助于促进应用数学研究人员和实验科学家之间更密切的互动。薄膜铁磁材料是现代数字技术中大量数据存储应用的核心。这些材料的广泛使用是由于它们能够以不同磁化状态的形式保留信息,而不需要供电,并且能够以快速可靠的方式读写信息。这个项目的动机是开发一种基于薄膜铁磁材料的新型通用计算机存储器,磁阻随机存取存储器(MRAM)。研究者解决可行性和可靠性的问题,设计使用铁磁纳米片作为存储元件。这些问题的进展对计算机行业具有很大的潜在影响。此外,该项目的一个关键方面是在这个高度跨学科的研究领域培养新一代应用数学家。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Emergence of nontrivial minimizers for thethree-dimensional Ohta–Kawasaki energy
三维太田川崎能量非平凡最小化器的出现
- DOI:10.2140/paa.2020.2.1
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Knüpfer, Hans;Muratov, Cyrill B.;Novaga, Matteo
- 通讯作者:Novaga, Matteo
Edge Domain Walls in Ultrathin Exchange-Biased Films
超薄交换偏压薄膜中的边缘畴壁
- DOI:10.1007/s00332-019-09604-w
- 发表时间:2020
- 期刊:
- 影响因子:3
- 作者:Lund, Ross G.;Muratov, Cyrill B.;Slastikov, Valeriy V.
- 通讯作者:Slastikov, Valeriy V.
Importance Sampling for Thermally Induced Switching and Non-Switching Probabilities in Spin-Torque Magnetic Nanodevices
自旋扭矩磁性纳米器件中热感应开关和非开关概率的重要采样
- DOI:10.1109/tmag.2019.2914993
- 发表时间:2019
- 期刊:
- 影响因子:2.1
- 作者:Yu, Yiming;Muratov, Cyrill B.;Moore, Richard O.
- 通讯作者:Moore, Richard O.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cyrill Muratov其他文献
Cyrill Muratov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cyrill Muratov', 18)}}的其他基金
Collaborative Research: Dynamics of Morphogen Gradients
合作研究:形态发生梯度动力学
- 批准号:
1119724 - 财政年份:2011
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
Winding domain walls in thin ferromagnetic films
铁磁薄膜中的缠绕磁畴壁
- 批准号:
0908279 - 财政年份:2009
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
Collaborative Research: Analysis of spatiotemporal signal processing in developmental patterning
合作研究:发育模式中的时空信号处理分析
- 批准号:
0718027 - 财政年份:2007
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
Collaborative Research: Modeling and Computational Analysis of Cell Communication in Drosophila Ogenesis
合作研究:果蝇发育中细胞通讯的建模和计算分析
- 批准号:
0211864 - 财政年份:2002
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高性能纤维混凝土构件抗爆的强度预测
- 批准号:51708391
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
基于随机网络演算的无线机会调度算法研究
- 批准号:60702009
- 批准年份:2007
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于随机模型检测的网络脆弱性分析研究
- 批准号:60573144
- 批准年份:2005
- 资助金额:5.0 万元
- 项目类别:面上项目
二阶段随机优化的并行方法
- 批准号:10161002
- 批准年份:2001
- 资助金额:4.5 万元
- 项目类别:地区科学基金项目
相似海外基金
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Research Grant
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterizing Pareto fronts: Trade-offs in the yeast growth cycle constrain adaptation
表征帕累托前沿:酵母生长周期的权衡限制了适应
- 批准号:
10749856 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
- 批准号:
EP/Y033248/1 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Research Grant
Cell factory design: unlocking the Multi-Objective Stochastic meTabolic game (MOST)
细胞工厂设计:解锁多目标随机代谢游戏(MOST)
- 批准号:
EP/X041239/1 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Research Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337427 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Continuing Grant