Collaborative Research: Transmission of Quantum Information in Circuits of Superconducting Qubits
合作研究:超导量子比特电路中的量子信息传输
基本信息
- 批准号:1314861
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum computers have the potential to solve problems that are completely impossible for classical computers, ranging from cryptography for national defense to face recognition and drug development. Just as the transistor is the building block of all modern digital circuits, the quantum bit (aka the qubit) is the heart of a quantum computer. Superconducting qubits, which are essentially artificial two-level atoms that can be designed and fabricated using integrated circuit technology, have emerged as one of the top candidates for realizing scalable quantum information processing. In order to perform quantum computation successfully, quantum computing circuits must be able to transfer quantum information rapidly among a large number of qubits with high fidelity. However, because existing protocols for quantum information transfer (QIT) are in general an order of magnitude slower than single qubit gates, QIT has become the bottleneck for quantum computation. Furthermore, conventional methods of QIT either require a large amount of on-chip real estate or have relatively low quality factor leading to lower efficiency and fidelity. Therefore, it is difficult to scale up qubit circuits to a practically useful size with these protocols. The focus of this project is to demonstrate the basic elements of a novel method of quantum information transmission in superconducting qubit circuits. This new approach uses "dual-rail arrays of negative-inductance Superconducting QUantum Interference Devices (nSQUIDs)" as the information transmitting structures for significant improvement over the current state-of-the-art QIT protocols. The negative mutual inductance between the branches of an nSQUID assigns the two tasks of processing and transferring quantum information to different parts of the nSQUID circuit and therefore makes it possible to optimize parameters of each part for its particular task, so that much faster QIT can be achieved. The success of the project will thus remove one of the most critical roadblocks to building quantum computers. Therefore, knowledge and insights gained from the project activities can be readily applied to other superconducting qubit based quantum computing circuits.Quantum information research has emerged as a highly competitive cutting edge research field which is actively pursued by all major nations around the world. It is critically important to national security and to maintaining United States' leadership position in scientific discoveries and technological innovations. This collaborative project between theoretical and experimental groups in quantum circuit physics provides a good opportunity for education and training of the graduate and undergraduate students in one of the frontiers of scientific exploration. The project also includes significant outreach and education activities such as improving the undergraduate and graduate classes in Quantum Computing developed with previous NSF support at the University of Kansas and Stony Brook University; involving undergraduates into quantum information research at Kansas; and presenting colloquia on quantum information at local high schools, colleges and universities.
量子计算机有潜力解决经典计算机完全不可能解决的问题,从国防密码学到人脸识别和药物开发。就像晶体管是所有现代数字电路的构建块一样,量子比特(又名量子比特)是量子计算机的核心。 超导量子比特本质上是可以使用集成电路技术设计和制造的人工两级原子,已经成为实现可扩展量子信息处理的最佳候选者之一。为了成功地进行量子计算,量子计算电路必须能够在大量量子比特之间快速地传输量子信息,并且具有高保真度。 然而,由于现有的量子信息传输(QIT)协议通常比单量子比特门慢一个数量级,QIT已成为量子计算的瓶颈。此外,传统的QIT方法要么需要大量的片上真实的面积,要么具有相对低的品质因数,导致较低的效率和保真度。因此,很难用这些协议将量子位电路放大到实际有用的大小。 该项目的重点是展示超导量子比特电路中量子信息传输新方法的基本要素。这种新方法使用“负电感超导量子干涉器件(nSQUID)的双轨阵列”作为信息传输结构,以显著改进当前最先进的QIT协议。nSQUID的分支之间的负互感将处理和传输量子信息的两个任务分配给nSQUID电路的不同部分,因此可以针对其特定任务优化每个部分的参数,从而可以实现更快的QIT。该项目的成功将消除构建量子计算机的最关键障碍之一。因此,从项目活动中获得的知识和见解可以很容易地应用于其他基于超导量子比特的量子计算电路。量子信息研究已经成为世界上所有主要国家积极追求的竞争激烈的前沿研究领域。它对国家安全和保持美国在科学发现和技术创新方面的领导地位至关重要。量子电路物理学理论和实验小组之间的这个合作项目为研究生和本科生在科学探索前沿之一的教育和培训提供了良好的机会。该项目还包括重要的推广和教育活动,如改进在堪萨斯大学和斯托尼布鲁克大学与以前的NSF支持开发的量子计算本科生和研究生课程;在堪萨斯大学让本科生参与量子信息研究;并在当地高中,学院和大学举办量子信息研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siyuan Han其他文献
One-step transfer or exchange of arbitrary multipartite quantum states with a single-qubit coupler
使用单量子位耦合器一步转移或交换任意多部分量子态
- DOI:
10.1103/physrevb.92.054509 - 发表时间:
2015-08 - 期刊:
- 影响因子:3.7
- 作者:
Chui-Ping Yang;Qi-Ping Su;Shi-Biao Zheng;Siyuan Han - 通讯作者:
Siyuan Han
Principle and experimental investigation of current-driven negative-inductance superconducting quantum interference device
电流驱动负电感超导量子干涉装置原理及实验研究
- DOI:
10.1088/1361-6668/aa52ef - 发表时间:
2017 - 期刊:
- 影响因子:3.6
- 作者:
Hao Li;Jianshe Liu;Yingshan Zhang;Han Cai;Gang Li;Qichun Liu;Siyuan Han;Wei Chen - 通讯作者:
Wei Chen
A small error-correction code for protecting three-qubit quantum information
用于保护三量子位量子信息的小型纠错码
- DOI:
10.1134/1.1753423 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Chuiping Yang;S. Chu;Siyuan Han - 通讯作者:
Siyuan Han
Highly efficient NIR-II luminescent I–III–VI semiconductor nanoprobes based on AgInTe2:Zn/ZnS nanocrystals
- DOI:
10.1039/d1cc05533j - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Jiayao Li;Tianyong Guan;Datao Tu;Wei Lian;Peng Zhang;Siyuan Han;Fei Wen;Xueyuan Chen - 通讯作者:
Xueyuan Chen
Boosting Near-Infrared Luminescence of Lanthanide in Cs2AgBiCl6 Double Perovskites via Breakdown of the Local Site Symmetry.
通过局部位点对称性的破坏增强 Cs2AgBiCl6 双钙钛矿中镧系元素的近红外发光。
- DOI:
10.1002/anie.202205276 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yifan Pei;Datao Tu;Chenliang Li;Siyuan Han;Zhi Xie;Fei Wen;Luping Wang;Xueyuan Chen - 通讯作者:
Xueyuan Chen
Siyuan Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siyuan Han', 18)}}的其他基金
ITR: Superconducting Qubits and Qugates for Scalable Quantum Computing
ITR:用于可扩展量子计算的超导量子位和量子门
- 批准号:
0325551 - 财政年份:2003
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
ITR: Fast Superconducting Qubit and Qugate for Quantum Computing
ITR:用于量子计算的快速超导量子位和 Qugate
- 批准号:
0082499 - 财政年份:2000
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Quantum Mechanics of Macroscopic Variables
宏观变量的量子力学
- 批准号:
9876874 - 财政年份:1999
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: SWIFT: Nonlinear and Inseparable Radar And Data (NIRAD) Transmission Framework for Pareto Efficient Spectrum Access in Future Wireless Networks
合作研究:SWIFT:未来无线网络中帕累托高效频谱接入的非线性不可分离雷达和数据 (NIRAD) 传输框架
- 批准号:
2348826 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Genes to ecology in tropical trees: how sharing resistance gene alleles affects pathogen transmission and growth
合作研究:热带树木生态的基因:共享抗性基因等位基因如何影响病原体传播和生长
- 批准号:
2039487 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Genes to ecology in tropical trees: how sharing resistance gene alleles affects pathogen transmission and growth
合作研究:热带树木生态的基因:共享抗性基因等位基因如何影响病原体传播和生长
- 批准号:
2039497 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Nonlinear and Inseparable Radar And Data (NIRAD) Transmission Framework for Pareto Efficient Spectrum Access in Future Wireless Networks
合作研究:SWIFT:未来无线网络中帕累托高效频谱接入的非线性不可分离雷达和数据 (NIRAD) 传输框架
- 批准号:
2128448 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Metapopulation Modeling to Develop Strategies to Reduce COVID-19 Transmission in Public Spaces
RAPID:协作研究:通过元群体建模制定减少公共场所 COVID-19 传播的策略
- 批准号:
2204662 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Nonlinear and Inseparable Radar And Data (NIRAD) Transmission Framework for Pareto Efficient Spectrum Access in Future Wireless Networks
合作研究:SWIFT:未来无线网络中帕累托高效频谱接入的非线性不可分离雷达和数据 (NIRAD) 传输框架
- 批准号:
2128368 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Nonlinear and Inseparable Radar And Data (NIRAD) Transmission Framework for Pareto Efficient Spectrum Access in Future Wireless Networks
合作研究:SWIFT:未来无线网络中帕累托高效频谱接入的非线性不可分离雷达和数据 (NIRAD) 传输框架
- 批准号:
2128455 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Metapopulation Modeling to Develop Strategies to Reduce COVID-19 Transmission in Public Spaces
RAPID:协作研究:通过元群体建模制定减少公共场所 COVID-19 传播的策略
- 批准号:
2032634 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Effective Face Masks to Mitigate COVID-19 Transmission: Insights from Multimodal Quantitative Analysis
合作研究:有效缓解 COVID-19 传播的口罩:多模态定量分析的见解
- 批准号:
2034983 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Standard Grant














{{item.name}}会员




