ITR: Superconducting Qubits and Qugates for Scalable Quantum Computing
ITR:用于可扩展量子计算的超导量子位和量子门
基本信息
- 批准号:0325551
- 负责人:
- 金额:$ 323.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Information Technology Research (ITR) project brings together an international team from the University of Kansas, SUNY at Stony Brook, and the Kansai Advanced Research Center (KARC), Japan to focus on one of the more promising approaches to solid-state qubits, viz. superconducting flux and charge qubits based on Josephson junctions (JJs). The use of superconducting JJ devices for qubit applications, such as quantum computation, requires resolution of a number of major challenges: Optimizing superconducting materials parameters and corresponding junction fabrication methods; Identification of suitable methods for preparation and manipulation of coherent quantum states; Development of measurement protocols; Design of qubit and quantum gates; finally, Development of error-prevention/correction schemes specific to JJ systems. To this end, high quality JJ qubits based on niobium, niobium nitride, and aluminum will be fabricated and their coherence properties investigated in time and frequency domains. Correlations between qubit decoherence and material properties and fabrication methods will be systematically investigated. In addition, algorithms will be developed to reduce and mitigate decoherence and gate errors. The project involves international education and training for students from the undergraduate to post-doctoral associate level. The participants receive fundamental training in a range of cutting edge techniques in condensed matter and low temperature physics. This prepares them for careers in academe, industry and government; particularly in the emerging area of quantum information science and technology, a field that contributes to national competitiveness and homeland security. This Information Technology Research (ITR) project brings together an international team from the University of Kansas, SUNY at Stony Brook, and the Kansai Advanced Research Center (KARC), Japan to focus on several key problems confronting the quest for practical quantum computers. This new class of computers depends upon controlling quantum mechanical states in device elements, as opposed to the uncontrolled electron states of motion in atoms and molecules. If this quantum control is achieved, such computers are predicted to be able to solve a number of very important problems that are virtually intractable for existing or projected classical computers. One of these is the problem of factoring of very large numbers-a key to cryptography. Beyond this, simply understanding and controlling a quantum system is of great fundamental and almost immediate technological interest. An enormous obstacle to the development of quantum computers is the requirement that the computer be able to maintain the quantum mechanical coherence among all its device elements throughout a calculation. Inevitable interactions of macroscopic device elements with the external world, or environment, can rapidly destroy this coherence and are, in fact, the major reason why quantum effects are not observed in everyday experiences. This project will make use of the highly coherent state of a superconducting material to form the basic element of a quantum computer, a so-called, qubit. This approach will also permit the use of integrated circuit technology to scale the computer to a useful size. A major effort will be to investigate and solve the fabrication and design issues to minimize decoherence. Students and post-docs will receive training in the state-of-the-art fabrication and measurement technology, as well as the underlying theory of decoherence in macroscopic systems-a field of rapidly emerging importance known as "quantum information science".
这个信息技术研究(ITR)项目汇集了来自堪萨斯大学,纽约州立大学石溪分校和日本关西高级研究中心(KARC)的国际团队,专注于固态量子比特的一种更有前途的方法,即基于约瑟夫森结(JJs)的超导通量和电荷量子比特。将超导JJ器件用于量子比特应用,如量子计算,需要解决一些主要挑战:优化超导材料参数和相应的结制造方法;确定相干量子态的制备和操作的合适方法;制定测量方案;量子比特和量子门的设计最后,开发针对JJ系统的错误预防/纠正方案。为此,将制备基于铌、氮化铌和铝的高质量JJ量子比特,并研究它们在时间和频域的相干性。量子比特退相干与材料性质和制造方法之间的关系将被系统地研究。此外,算法将开发,以减少和减轻退相干和门误差。该项目涉及本科至博士后阶段学生的国际教育和培训。参与者接受一系列凝聚态和低温物理前沿技术的基础培训。这为他们在学术界、工业界和政府的职业生涯做好了准备;特别是在量子信息科学与技术这一新兴领域,这一领域有助于提高国家竞争力和国土安全。这个信息技术研究(ITR)项目汇集了来自堪萨斯大学、纽约州立大学石溪分校和日本关西高级研究中心(KARC)的国际团队,专注于寻求实用量子计算机所面临的几个关键问题。这种新型计算机依赖于控制器件元件中的量子力学状态,而不是原子和分子中不受控制的电子运动状态。如果这种量子控制得以实现,预计这种计算机将能够解决许多非常重要的问题,而这些问题对于现有或计划中的经典计算机来说实际上是难以解决的。其中之一是对非常大的数字进行因数分解的问题——这是密码学的关键。除此之外,仅仅理解和控制量子系统就具有重大的基础和几乎直接的技术利益。量子计算机发展的一个巨大障碍是要求计算机能够在整个计算过程中保持其所有设备元素之间的量子力学相干性。宏观器件元件与外部世界或环境不可避免的相互作用会迅速破坏这种相干性,事实上,这也是量子效应在日常生活中无法观察到的主要原因。这个项目将利用超导材料的高度相干状态来形成量子计算机的基本元素,即所谓的量子位。这种方法还允许使用集成电路技术将计算机缩放到一个有用的尺寸。一个主要的努力将是调查和解决制造和设计问题,以尽量减少退相干。学生和博士后将接受最先进的制造和测量技术的培训,以及宏观系统中退相干的基本理论,这是一个迅速崛起的重要领域,被称为“量子信息科学”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siyuan Han其他文献
One-step transfer or exchange of arbitrary multipartite quantum states with a single-qubit coupler
使用单量子位耦合器一步转移或交换任意多部分量子态
- DOI:
10.1103/physrevb.92.054509 - 发表时间:
2015-08 - 期刊:
- 影响因子:3.7
- 作者:
Chui-Ping Yang;Qi-Ping Su;Shi-Biao Zheng;Siyuan Han - 通讯作者:
Siyuan Han
Principle and experimental investigation of current-driven negative-inductance superconducting quantum interference device
电流驱动负电感超导量子干涉装置原理及实验研究
- DOI:
10.1088/1361-6668/aa52ef - 发表时间:
2017 - 期刊:
- 影响因子:3.6
- 作者:
Hao Li;Jianshe Liu;Yingshan Zhang;Han Cai;Gang Li;Qichun Liu;Siyuan Han;Wei Chen - 通讯作者:
Wei Chen
A small error-correction code for protecting three-qubit quantum information
用于保护三量子位量子信息的小型纠错码
- DOI:
10.1134/1.1753423 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Chuiping Yang;S. Chu;Siyuan Han - 通讯作者:
Siyuan Han
Highly efficient NIR-II luminescent I–III–VI semiconductor nanoprobes based on AgInTe2:Zn/ZnS nanocrystals
- DOI:
10.1039/d1cc05533j - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Jiayao Li;Tianyong Guan;Datao Tu;Wei Lian;Peng Zhang;Siyuan Han;Fei Wen;Xueyuan Chen - 通讯作者:
Xueyuan Chen
Boosting Near-Infrared Luminescence of Lanthanide in Cs2AgBiCl6 Double Perovskites via Breakdown of the Local Site Symmetry.
通过局部位点对称性的破坏增强 Cs2AgBiCl6 双钙钛矿中镧系元素的近红外发光。
- DOI:
10.1002/anie.202205276 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yifan Pei;Datao Tu;Chenliang Li;Siyuan Han;Zhi Xie;Fei Wen;Luping Wang;Xueyuan Chen - 通讯作者:
Xueyuan Chen
Siyuan Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siyuan Han', 18)}}的其他基金
Collaborative Research: Transmission of Quantum Information in Circuits of Superconducting Qubits
合作研究:超导量子比特电路中的量子信息传输
- 批准号:
1314861 - 财政年份:2013
- 资助金额:
$ 323.6万 - 项目类别:
Continuing Grant
ITR: Fast Superconducting Qubit and Qugate for Quantum Computing
ITR:用于量子计算的快速超导量子位和 Qugate
- 批准号:
0082499 - 财政年份:2000
- 资助金额:
$ 323.6万 - 项目类别:
Continuing Grant
Quantum Mechanics of Macroscopic Variables
宏观变量的量子力学
- 批准号:
9876874 - 财政年份:1999
- 资助金额:
$ 323.6万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Applications and Architectures with Heterogeneous Superconducting Qubits
职业:异构超导量子位的应用和架构
- 批准号:
2338063 - 财政年份:2024
- 资助金额:
$ 323.6万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Exploring van der Waals Superconducting Josephson Junctions for Robust Qubits
RII Track-4:NSF:探索稳健量子位的范德华超导约瑟夫森结
- 批准号:
2327410 - 财政年份:2024
- 资助金额:
$ 323.6万 - 项目类别:
Standard Grant
CAREER: Second Generation Qubits -- the future of superconducting quantum computing
职业:第二代量子位——超导量子计算的未来
- 批准号:
2240129 - 财政年份:2023
- 资助金额:
$ 323.6万 - 项目类别:
Continuing Grant
Quantum mechanical simulation of superconducting qubits
超导量子位的量子力学模拟
- 批准号:
2605458 - 财政年份:2021
- 资助金额:
$ 323.6万 - 项目类别:
Studentship
QuIC – TAQS: Interconnected superconducting and color center qubits in silicon devices
QuIC → TAQS:硅器件中互连的超导和色心量子位
- 批准号:
2137645 - 财政年份:2021
- 资助金额:
$ 323.6万 - 项目类别:
Continuing Grant
Digital Control of Superconducting Fluxonium Qubits
超导氟钇量子位的数字控制
- 批准号:
2578370 - 财政年份:2021
- 资助金额:
$ 323.6万 - 项目类别:
Studentship
Development of filter circuit for suppressing residual interaction between superconducting qubits
开发用于抑制超导量子位之间残余相互作用的滤波器电路
- 批准号:
21J15221 - 财政年份:2021
- 资助金额:
$ 323.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Microwave quantum optics with tunable cavity resonators and superconducting qubits
具有可调谐腔谐振器和超导量子位的微波量子光学
- 批准号:
20F20757 - 财政年份:2020
- 资助金额:
$ 323.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Engineering control and readout of superconducting qubits
超导量子位的工程控制和读出
- 批准号:
2431604 - 财政年份:2020
- 资助金额:
$ 323.6万 - 项目类别:
Studentship
Superconducting qubits and current standard devices using self-duality
使用自对偶性的超导量子位和当前标准器件
- 批准号:
20H02215 - 财政年份:2020
- 资助金额:
$ 323.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)