Complexity of Simulating Quantum Adiabatic Optimization by Quantum Monte Carlo Methods
用量子蒙特卡罗方法模拟量子绝热优化的复杂性
基本信息
- 批准号:1314969
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project "Complexity of Simulating Quantum Adiabatic Optimization by Quantum Monte Carlo Methods" investigates the computational power and weaknesses of a widely used method for simulating quantum physics. The Quantum Monte Carlo method is a commonly used algorithm for analyzing and simulating large, coherent quantum systems. Although it is known that this method can not efficiently simulate all quantum mechanical systems, it is also known to provide reliable answers for a large subclass of such systems. The project focuses on the specific question whether or not a quantum computer running the Quantum Adiabatic Optimization algorithm is efficiently simulatable by the Quantum Monte Carlo method. The theory of quantum computation looks at the question which problems can be solved efficiently on a quantum computer that do not have an efficient solution using classical computation. An important case of this theory concerns Quantum Adiabatic Optimization, which is a general purpose quantum algorithm that attempts to find the optimal value in an exponentially large landscape of function values. Despite more than 12 years of study, it is still not known to which extend this quantum heuristic performs better than classical heuristics. On the one hand, it is possible that a classical algorithm that uses the Quantum Monte Carlo method will be able to efficiently simulate quantum adiabatic optimization, which would prove a strong limitation on the 'quantum benefit' of the quantum adiabatic approach to solving optimization problems. On the other hand, it is also possible that one can prove that the Quantum Monte Carlo method does not succeed in efficiently mimicking the quantum adiabatic algorithm, thus providing strong evidence that quantum adiabatic optimization does indeed have computational powers that go beyond classical computation. This project aims to determine which one of these two possibilities is the case. Research in quantum computation is high interdisciplinary with impacts in a number of areas of physics and computer science. In addition, this project will support the education and training of a graduate student in this cross-disciplinary research.
“通过量子蒙特卡罗方法模拟量子绝热优化的复杂性”项目研究了一种广泛使用的模拟量子物理方法的计算能力和弱点。量子蒙特卡罗方法是分析和模拟大型相干量子系统的常用算法。虽然已知这种方法不能有效地模拟所有量子力学系统,但也已知它可以为此类系统的一个大子类提供可靠的答案。本项目的研究对象是运行量子绝热优化算法的量子计算机是否可以通过量子蒙特卡罗方法有效地模拟的具体问题。量子计算理论研究的是,在经典计算无法有效解决的问题中,哪些问题可以在量子计算机上有效地解决。这个理论的一个重要案例是量子绝热优化,它是一种通用的量子算法,试图在指数级大的函数值中找到最优值。尽管研究了12年多,但仍然不知道这种量子启发式比经典启发式更好。一方面,使用量子蒙特卡罗方法的经典算法将能够有效地模拟量子绝热优化,这将证明对量子绝热方法解决优化问题的“量子效益”的强烈限制。另一方面,也可以证明量子蒙特卡罗方法不能有效地模拟量子绝热算法,从而提供强有力的证据证明量子绝热优化确实具有超越经典计算的计算能力。本项目旨在确定这两种可能性中的哪一种情况。 量子计算的研究是高度跨学科的,对物理学和计算机科学的许多领域都有影响。此外,该项目将支持教育和培训的研究生在这个跨学科的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Willem van Dam其他文献
Willem van Dam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Willem van Dam', 18)}}的其他基金
CCF: AF: Small: Quantum Data Structures and Algorithms
CCF:AF:小:量子数据结构和算法
- 批准号:
1719118 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Strengths and Weaknesses of Simulated Quantum Annealing
模拟量子退火的优点和缺点
- 批准号:
1620843 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Small:CIF:Exact Thresholds for Quantum Information Processing
Small:CIF:量子信息处理的精确阈值
- 批准号:
0917244 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Algebraic and Semiclassical Methods for Quantum Computing
职业:量子计算的代数和半经典方法
- 批准号:
0747526 - 财政年份:2008
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似海外基金
Simulating chemical reactions on quantum computers
在量子计算机上模拟化学反应
- 批准号:
FT230100653 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
ARC Future Fellowships
CAREER: Simulating Mesoscale Quantum Dynamics and Non-linear Microscopy
职业:模拟中尺度量子动力学和非线性显微镜
- 批准号:
2341178 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Development of numerical methods for simulating quantum dynamics towards the control of quantum computers
开发用于模拟量子动力学以控制量子计算机的数值方法
- 批准号:
23K13042 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Simulating ultracold quantum chemistry at conical intersections
模拟圆锥形交叉点的超冷量子化学
- 批准号:
EP/W015641/1 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Research Grant
Quantum Master Equations for Simulating Chemical Dynamics
用于模拟化学动力学的量子主方程
- 批准号:
2154114 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Machine Learning Surrogates for Simulating Quantum Materials
用于模拟量子材料的机器学习替代品
- 批准号:
580909-2022 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Alliance Grants
Large scale integrated quantum photonics for simulating particle physics
用于模拟粒子物理的大规模集成量子光子学
- 批准号:
2762630 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Studentship
CAREER: Simulating Mesoscale Quantum Dynamics and Non-linear Microscopy
职业:模拟中尺度量子动力学和非线性显微镜
- 批准号:
2145358 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Simulating and verifying quantum circuits
模拟和验证量子电路
- 批准号:
DP220101771 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Discovery Projects
Simulating High Energy Physics with Quantum Photonics
用量子光子学模拟高能物理
- 批准号:
ST/W00660X/1 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Research Grant














{{item.name}}会员




