CAREER: Algebraic and Semiclassical Methods for Quantum Computing
职业:量子计算的代数和半经典方法
基本信息
- 批准号:0747526
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-02-01 至 2015-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project explores the power and limitations of quantum computers using new analytical techniques from algebraic geometry and the physics of semi-classical systems. Whether or not we decide to spend large amounts of resources on the construction of a scalable quantum computer will depend largely on the expected benefits of such a machine, but our current understanding of this issue is still very limited. The research of this project should give us a better picture of the usefulness of processing information in a quantum mechanical way by providing a dictionary between the properties of quantum circuits and some of the more intuitive ideas in geometry. The outreach component consists of the design and implementation of an authoritative, annotated bibliography of online sources of information on quantum computing, which will be made freely available to those outside of academia.The evolution of a quantum computer is best described as a weighted sum of classical computations, where each weight is a complex valued probability amplitude. As a result, the overall probabilities of the quantum computation can be calculated using the corresponding exponential sums of amplitudes, which is a concept that has been studied extensively in algebraic geometry. In this project we translate the geometric and topological ideas behind these exponential sums to the properties of the corresponding quantum circuits. From a physical point of view, the phase of an amplitude is proportional to its `action', which, through the Least Action Principle, plays a crucial role in connecting quantum mechanics with classical mechanics. We use this viewpoint to relate quantum computation to its sum of classical computational paths.
该项目探索量子计算机的能力和局限性,使用代数几何和半经典系统物理学的新分析技术。我们是否决定花费大量资源来构建可扩展的量子计算机将在很大程度上取决于这种机器的预期好处,但我们目前对这个问题的理解仍然非常有限。这个项目的研究应该通过提供量子电路的性质和几何中一些更直观的想法之间的字典,让我们更好地了解以量子力学方式处理信息的有用性。外联部分包括设计和实施一个权威的、带注释的量子计算在线信息源书目,该书目将免费提供给学术界以外的人。量子计算机的演变最好描述为经典计算的加权和,其中每个权重是复值概率幅度。因此,量子计算的总概率可以使用相应的振幅指数和来计算,这是一个在代数几何中被广泛研究的概念。在这个项目中,我们将这些指数和背后的几何和拓扑思想转化为相应量子电路的性质。从物理学的角度来看,振幅的相位与其“作用”成正比,通过最小作用原理,它在连接量子力学与经典力学方面发挥着至关重要的作用。 我们用这个观点来把量子计算与它的经典计算路径之和联系起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Willem van Dam其他文献
Willem van Dam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Willem van Dam', 18)}}的其他基金
CCF: AF: Small: Quantum Data Structures and Algorithms
CCF:AF:小:量子数据结构和算法
- 批准号:
1719118 - 财政年份:2017
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Strengths and Weaknesses of Simulated Quantum Annealing
模拟量子退火的优点和缺点
- 批准号:
1620843 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Complexity of Simulating Quantum Adiabatic Optimization by Quantum Monte Carlo Methods
用量子蒙特卡罗方法模拟量子绝热优化的复杂性
- 批准号:
1314969 - 财政年份:2013
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Small:CIF:Exact Thresholds for Quantum Information Processing
Small:CIF:量子信息处理的精确阈值
- 批准号:
0917244 - 财政年份:2009
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
- 批准号:
2333970 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
- 批准号:
DP240100186 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Discovery Projects
Conference: Algebraic Cycles, Motives and Regulators
会议:代数环、动机和调节器
- 批准号:
2401025 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Conference: Algebraic Structures in Topology 2024
会议:拓扑中的代数结构 2024
- 批准号:
2348092 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Conference: Texas Algebraic Geometry Symposium (TAGS) 2024-2026
会议:德克萨斯代数几何研讨会 (TAGS) 2024-2026
- 批准号:
2349244 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Algebraic Methods for Quantified Constraints
量化约束的代数方法
- 批准号:
EP/X03190X/1 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Research Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
- 批准号:
2348525 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Standard Grant