TWC: Medium: Collaborative: HIMALAYAS: Hierarchical Machine Learning Stack for Fine-Grained Analysis of Malware Domain Groups
TWC:媒介:协作:HIMALAYAS:用于恶意软件域组细粒度分析的分层机器学习堆栈
基本信息
- 批准号:1314956
- 负责人:
- 金额:$ 59.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-10-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The domain name system (DNS) protocol plays a significant role in operation of the Internet by enabling the bi-directional association of domain names with IP addresses. It is also increasingly abused by malware, particularly botnets, by use of: (1) automated domain generation algorithms for rendezvous with a command-and-control (C&C) server, (2) DNS fast flux as a way to hide the location of malicious servers, and (3) DNS as a carrier channel for C&C communications. This project explores the development of a scalable, hierarchical machine-learning stack, called HIMALAYAS, which specializes in algorithms for automatically mining DNS data for malware activity. In particular, we are interested in isolating both ordered and unordered sets of malware domain groups whose access patterns are temporally and logically correlated. HIMALAYAS performs a task of increasing complexity at each level - starting from scalable clustering and feature selection at lower levels, to more advanced malware domain subsequence identification algorithms at higher levels. It has multiple benefits, including speed, accuracy, interpretability, and ability to use domain knowledge, which makes it very well suited for malware analysis and related tasks. The analysis by HIMALAYAS should accelerate the identification and takedown of malware domains on the Internet and improve services such as Google SafeSearch. The machine-learning stack developed as part of the HIMALAYAS project has broader application to many important data mining problems, e.g., in financial data analysis, and mining user patterns from web access logs. The project provides opportunities for students to participate in the development and transition of the technology.
域名系统(DNS)协议通过实现域名与IP地址的双向关联,在互联网的运行中扮演着重要的角色。恶意软件,特别是僵尸网络,也越来越多地滥用它:(1)用于与指挥与控制(C&;C)服务器会合的自动域生成算法,(2)作为隐藏恶意服务器位置的方式的域名快速流动,以及(3)作为C&;C通信的载体通道的域名。这个项目探索了一个可扩展的、层次化的机器学习堆栈的开发,称为喜马拉雅,它专门研究自动挖掘恶意软件活动的DNS数据的算法。特别是,我们感兴趣的是隔离访问模式在时间和逻辑上相关的恶意软件域组的有序和无序集合。喜马拉雅在每个级别上执行的任务都越来越复杂--从较低级别的可伸缩集群和特征选择开始,到较高级别的更高级恶意软件域子序列识别算法。它具有多个优点,包括速度、准确性、可解释性和使用领域知识的能力,这使得它非常适合恶意软件分析和相关任务。喜马拉雅的分析应该会加速识别和拆除互联网上的恶意软件域名,并改进谷歌安全搜索等服务。作为喜马拉雅项目的一部分开发的机器学习堆栈在许多重要的数据挖掘问题上有更广泛的应用,例如在金融数据分析和从网络访问日志中挖掘用户模式。该项目为学生提供了参与技术开发和过渡的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vinod Yegneswaran其他文献
Honeynet games: a game theoretic approach to defending network monitors
- DOI:
10.1007/s10878-009-9285-y - 发表时间:
2010-02-03 - 期刊:
- 影响因子:1.100
- 作者:
Jin-Yi Cai;Vinod Yegneswaran;Chris Alfeld;Paul Barford - 通讯作者:
Paul Barford
Vinod Yegneswaran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vinod Yegneswaran', 18)}}的其他基金
Collaborative Research: CNS Core: Small: Accelerating Serverless Cloud Network Performance
协作研究:CNS 核心:小型:加速无服务器云网络性能
- 批准号:
2229455 - 财政年份:2023
- 资助金额:
$ 59.61万 - 项目类别:
Standard Grant
TWC: TTP Option: Medium: Collaborative: MALDIVES: Developing a Comprehensive Understanding of Malware Delivery Mechanisms
TWC:TTP 选项:中:协作:马尔代夫:全面了解恶意软件传播机制
- 批准号:
1514503 - 财政年份:2015
- 资助金额:
$ 59.61万 - 项目类别:
Standard Grant
相似海外基金
TWC SBE: Medium: Collaborative: Brain Hacking: Assessing Psychological and Computational Vulnerabilities in Brain-based Biometrics
TWC SBE:媒介:协作:大脑黑客:评估基于大脑的生物识别技术中的心理和计算漏洞
- 批准号:
1840790 - 财政年份:2018
- 资助金额:
$ 59.61万 - 项目类别:
Continuing Grant
TWC SBE: Medium: Collaborative: Building a Privacy-Preserving Social Networking Platform from a Technological and Sociological Perspective
TWC SBE:媒介:协作:从技术和社会学角度构建保护隐私的社交网络平台
- 批准号:
1855391 - 财政年份:2018
- 资助金额:
$ 59.61万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Systems, Tools, and Techniques for Executing, Managing, and Securing SGX Programs
TWC:媒介:协作:用于执行、管理和保护 SGX 程序的系统、工具和技术
- 批准号:
1834213 - 财政年份:2018
- 资助金额:
$ 59.61万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Black-Box Evaluation of Cryptographic Entropy at Scale
TWC:媒介:协作:大规模密码熵的黑盒评估
- 批准号:
1937622 - 财政年份:2018
- 资助金额:
$ 59.61万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Efficient Repair of Learning Systems via Machine Unlearning
TWC:媒介:协作:通过机器取消学习有效修复学习系统
- 批准号:
1854000 - 财政年份:2018
- 资助金额:
$ 59.61万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Seal: Secure Engine for AnaLytics - From Secure Similarity Search to Secure Data Analytics
TWC:媒介:协作:Seal:AnaLytics 的安全引擎 - 从安全相似性搜索到安全数据分析
- 批准号:
1929901 - 财政年份:2018
- 资助金额:
$ 59.61万 - 项目类别:
Standard Grant
TWC: TTP Option: Medium: Collaborative: MALDIVES: Developing a Comprehensive Understanding of Malware Delivery Mechanisms
TWC:TTP 选项:中:协作:马尔代夫:全面了解恶意软件传播机制
- 批准号:
1748127 - 财政年份:2017
- 资助金额:
$ 59.61万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Dollars for Hertz: Making Trustworthy Spectrum Sharing Technically and Economically Viable
TWC SBE:媒介:协作:赫兹美元:使值得信赖的频谱共享在技术上和经济上可行
- 批准号:
1801986 - 财政年份:2017
- 资助金额:
$ 59.61万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Brain Hacking: Assessing Psychological and Computational Vulnerabilities in Brain-based Biometrics
TWC SBE:媒介:协作:大脑黑客:评估基于大脑的生物识别技术中的心理和计算漏洞
- 批准号:
1564104 - 财政年份:2016
- 资助金额:
$ 59.61万 - 项目类别:
Continuing Grant
TWC: Medium: Collaborative: New Protocols and Systems for RAM-Based Secure Computation
TWC:媒介:协作:基于 RAM 的安全计算的新协议和系统
- 批准号:
1562888 - 财政年份:2016
- 资助金额:
$ 59.61万 - 项目类别:
Standard Grant