Collaborative Research: CNS Core: Small: Accelerating Serverless Cloud Network Performance
协作研究:CNS 核心:小型:加速无服务器云网络性能
基本信息
- 批准号:2229455
- 负责人:
- 金额:$ 29.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Serverless computing has revolutionized cloud programming and is poised to become the next dominant cloud computing paradigm. Among the major allures of serverless computing is “agile autoscaling”, which brings forth both efficiency and economic advantages. However, such flexibility is accompanied by new network performance challenges that are uniquely endemic to the serverless compute environments. For example: (1) internal function chain communication becomes a bottleneck for serverless applications and (2) a unified function gateway increases the number of indirect connections in function chains that further impairs network performance. This project proposes a cross-layered effort that seeks to optimize the function chain communication in severless-cloud environments by exploring multiple, synergistic strategies to reduce latency in function-chain communication. The proposed solution includes (1) a new QUIC-based network substrate that can simultaneously improve performance and security, without the need for tenant code modification and (2) use of data-plane programming and informed request prediction to optimize resource allocation and mitigate cold-start issues in serverless multi-tenant clouds. This work will empower a broad class of novel serverless applications with stringent latency and security requirements and our proposed designs will be universally applicable across popular cloud platforms. This project will make the proposed implementations open-source and publicly release our evaluation environments through the NSF Fabric testbed, thus benefiting diverse stakeholders. This project will actively explore the transition of our work to commercial cloud services and open-source serverless communities, such as OpenFaaS and the QUIC-go project. This project will incorporate a detailed education and outreach plan targeting undergraduate and graduate researchers (through courses and summer internships), and women and minorities (through organizations like ThriveWiSE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无服务器计算已经彻底改变了云编程,并有望成为下一个主导的云计算范式。 无服务器计算的主要吸引力之一是“敏捷自动缩放”,它带来了效率和经济优势。然而,这种灵活性伴随着新的网络性能挑战,这些挑战是无服务器计算环境特有的。举例来说:(1)内部功能链通信成为无服务器应用的瓶颈,以及(2)统一功能网关增加了功能链中的间接连接的数量,这进一步损害了网络性能。 该项目提出了一种跨层的努力,旨在通过探索多种协同策略来减少功能链通信中的延迟,从而优化无服务器云环境中的功能链通信。 拟议的解决方案包括:(1)一个新的基于QUIC的网络底层,可以同时提高性能和安全性,而无需修改租户代码;(2)使用数据平面编程和通知请求预测来优化资源分配并缓解无服务器多租户云中的冷启动问题。这项工作将使广泛的新型无服务器应用程序具有严格的延迟和安全要求,我们提出的设计将普遍适用于流行的云平台。该项目将使拟议的实现开源,并通过NSF Fabric测试平台公开发布我们的评估环境,从而使不同的利益相关者受益。 该项目将积极探索我们的工作向商业云服务和开源无服务器社区的过渡,例如OpenFaaS和QUIC-go项目。 该项目将包括针对本科生和研究生研究人员(通过课程和暑期实习)以及妇女和少数民族(通过ThriveWiSE等组织)的详细教育和推广计划。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vinod Yegneswaran其他文献
Honeynet games: a game theoretic approach to defending network monitors
- DOI:
10.1007/s10878-009-9285-y - 发表时间:
2010-02-03 - 期刊:
- 影响因子:1.100
- 作者:
Jin-Yi Cai;Vinod Yegneswaran;Chris Alfeld;Paul Barford - 通讯作者:
Paul Barford
Vinod Yegneswaran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vinod Yegneswaran', 18)}}的其他基金
TWC: TTP Option: Medium: Collaborative: MALDIVES: Developing a Comprehensive Understanding of Malware Delivery Mechanisms
TWC:TTP 选项:中:协作:马尔代夫:全面了解恶意软件传播机制
- 批准号:
1514503 - 财政年份:2015
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: HIMALAYAS: Hierarchical Machine Learning Stack for Fine-Grained Analysis of Malware Domain Groups
TWC:媒介:协作:HIMALAYAS:用于恶意软件域组细粒度分析的分层机器学习堆栈
- 批准号:
1314956 - 财政年份:2013
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant