The impact of intensive livestock production on the disease ecology of antibiotic resistant staphylococcus

集约化畜牧生产对耐药葡萄球菌疾病生态的影响

基本信息

  • 批准号:
    1316318
  • 负责人:
  • 金额:
    $ 185.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

This project will explore whether intensive livestock production practices contribute to the evolution and increasing prevalence of multidrug-resistant Staphylococcus, including methicillin resistant Staphylococcus aureus (MRSA). Using field studies and genetic typing of Staphylococcus bacteria, principles for the emergence and dissemination of livestock-associated MRSA will be established, and models will be developed to explore transmission between food animal production systems, the environment, workers and communities. This project will build on existing partnerships with community groups in rural North Carolina and establish protocols and databases important for advancement of global scientific knowledge about MRSA.Models developed during this research will be useful to estimate the probability of transfer of MRSA from a farm into surrounding ecosystems and communities based on operational practices (e.g., antibiotic use, animal density, waste management systems). Outputs from the models could also help identify the most effective interventions to reduce transfer of MRSA into ecosystems and communities. Ultimately, these results will help evaluate whether modern livestock production systems affect the emergence of antibiotic resistant bacteria, and will provide important new insights into management practices that could impact the ecology of MRSA and other antibiotic resistant bacteria.
该项目将探讨集约化畜牧生产实践是否有助于耐多药葡萄球菌(包括耐甲氧西林金黄色葡萄球菌(MRSA))的演变和日益增加的患病率。通过实地研究和葡萄球菌的基因分型,将建立与牲畜相关的MRSA出现和传播的原则,并将开发模型来探索食用动物生产系统,环境,工人和社区之间的传播。该项目将建立在与北卡罗来纳州农村社区团体的现有合作伙伴关系的基础上,并建立对全球MRSA科学知识进步至关重要的协议和数据库。抗生素使用、动物密度、废物管理系统)。模型的输出还可以帮助确定最有效的干预措施,以减少MRSA向生态系统和社区的转移。最终,这些结果将有助于评估现代畜牧业生产系统是否影响抗生素耐药菌的出现,并将为可能影响MRSA和其他抗生素耐药菌生态的管理实践提供重要的新见解。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality
  • DOI:
    10.1007/s40572-020-00278-1
  • 发表时间:
    2020-06-15
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Holcomb, David A.;Stewart, Jill R.
  • 通讯作者:
    Stewart, Jill R.
Characterizing Differences in Sources of and Contributions to Fecal Contamination of Sediment and Surface Water with the Microbial FIT Framework
使用微生物 FIT 框架表征沉积物和地表水粪便污染的来源和贡献的差异
  • DOI:
    10.1021/acs.est.2c00224
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Wiesner-Friedman, Corinne;Beattie, Rachelle E.;Stewart, Jill R.;Hristova, Krassimira R.;Serre, Marc L.
  • 通讯作者:
    Serre, Marc L.
A watershed study assessing effects of commercial hog operations on microbial water quality in North Carolina, USA
  • DOI:
    10.1016/j.scitotenv.2022.156085
  • 发表时间:
    2022-05-25
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Christenson, Elizabeth;Wickersham, Lindsay;Stewart, Jill
  • 通讯作者:
    Stewart, Jill
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jill Stewart其他文献

Effect of birth and surfactant treatment on phospholipid synthesis in the premature rabbit.
出生和表面活性剂处理对早产兔磷脂合成的影响。
  • DOI:
    10.1159/000241371
  • 发表时间:
    1980
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jill Stewart;Leroy Metcalfe;P. Harding;G. Enhörning;F. Possmayer
  • 通讯作者:
    F. Possmayer
Predictive validity and reliability of adult hearing screening techniques.
成人听力筛查技术的预测有效性和可靠性。
An iterative run-to-run learning model to derive continuous brachial pressure estimates from arterial and venous lines during dialysis treatment
迭代运行学习模型,用于在透析治疗期间从动脉和静脉管线得出连续肱动脉压力估计值
  • DOI:
    10.31224/osf.io/wj9v5
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jill Stewart;Paul Stewart;T. Walker;D. Viramontes;Bethany Lucas;Kelly White;M. Taal;N. Selby;Mel Morris
  • 通讯作者:
    Mel Morris
Environmental Tobacco Smoke and Smoke Free Work Places and Pulmonary Rehabilitation
环境烟草烟雾和无烟工作场所与肺康复
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui;Jill Stewart;Kevin Becker
  • 通讯作者:
    Kevin Becker
Post-Stroke Fatigue is Associated With Cognitive Function and Information Processing Speed
  • DOI:
    10.1016/j.apmr.2018.07.067
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hui-Ting Goh;Jill Stewart
  • 通讯作者:
    Jill Stewart

Jill Stewart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CC* Networking Infrastructure: Enhancing network connectivity for data-intensive, multi-institution collaborative science
CC* 网络基础设施:增强数据密集型、多机构协作科学的网络连接
  • 批准号:
    2346718
  • 财政年份:
    2024
  • 资助金额:
    $ 185.79万
  • 项目类别:
    Standard Grant
DynaSun - Dynamics Of The Solar Corona In The Era Of Data Intensive Observations
DynaSun - 数据密集观测时代的日冕动力学
  • 批准号:
    EP/Y037464/1
  • 财政年份:
    2024
  • 资助金额:
    $ 185.79万
  • 项目类别:
    Research Grant
XTRIPODS: Algorithms and Machine Learning in Data Intensive Models
XTRIPODS:数据密集型模型中的算法和机器学习
  • 批准号:
    2342527
  • 财政年份:
    2024
  • 资助金额:
    $ 185.79万
  • 项目类别:
    Standard Grant
CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
  • 批准号:
    2347627
  • 财政年份:
    2024
  • 资助金额:
    $ 185.79万
  • 项目类别:
    Standard Grant
REU Site: Computational and Data Intensive Astrophysics at the University of Florida
REU 网站:佛罗里达大学的计算和数据密集型天体物理学
  • 批准号:
    2348547
  • 财政年份:
    2024
  • 资助金额:
    $ 185.79万
  • 项目类别:
    Standard Grant
Cotton Footprint: transitioning the carbon intensive cotton and textiles industry to renewable infrastructure through a whole supply chain approach
棉花足迹:通过整个供应链方法将碳密集型棉花和纺织工业转变为可再生基础设施
  • 批准号:
    10080796
  • 财政年份:
    2024
  • 资助金额:
    $ 185.79万
  • 项目类别:
    Collaborative R&D
Impact of nurses' behavior change and implementing evidence-based practice to improve quality indicators in intensive care units in low-and middle-income countries
护士行为改变和实施循证实践对提高低收入和中等收入国家重症监护病房质量指标的影响
  • 批准号:
    24K02733
  • 财政年份:
    2024
  • 资助金额:
    $ 185.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dynamics of the solar corona in the era of data intensive observations (DynaSun)
数据密集观测时代的日冕动力学(DynaSun)
  • 批准号:
    EP/Y037456/1
  • 财政年份:
    2024
  • 资助金额:
    $ 185.79万
  • 项目类别:
    Research Grant
CC* Networking Infrastructure: FAN4Science: Flow-Aware Networking for Data-Intensive Science
CC* 网络基础设施:FAN4Science:数据密集型科学的流感知网络
  • 批准号:
    2346681
  • 财政年份:
    2024
  • 资助金额:
    $ 185.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercell Left Flank Boundaries and Coherent Structures--Targeted Observations by Radars and UAS of Supercells Left-flank-Intensive Experiment (TORUS-LItE)
合作研究:超级单元左翼边界和相干结构——雷达和无人机对超级单元左翼密集实验(TORUS-LItE)的定向观测
  • 批准号:
    2312994
  • 财政年份:
    2023
  • 资助金额:
    $ 185.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了