High Order Maximum Principle Preserving Finite Difference Schemes for Hyperbolic Conservation Laws
高阶极大值原理保持双曲守恒定律的有限差分格式
基本信息
- 批准号:1316662
- 负责人:
- 金额:$ 22.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main focus of this proposal is to develop and to analyze a novel parametrized maximum principle preserving flux limiter technique for high order numerical schemes applied to hyperbolic conservation laws. A flux limiting technique will also be designed to obtain high order positivity preserving schemes. Numerical schemes that preserve the maximum principle and positivity are desirable because physically relevant solutions have those properties. The development is based on finite difference methods, which have the advantage of producing accurate approximations with low computational cost especially in multi-dimensional simulations. Within the proposed framework, conservative maximum principle preserving high order finite difference, finite volume and discontinuous Galerkin schemes can be designed that allow for significantly large CFL number, and therefore more efficient computational simulation. Some important applications investigated in this proposal include compressible Euler equations, magneto hydrodynamics equations and Vlasov-Maxwell equations.The investigator is developing new computational techniques that can be applied to difficult and very important problems in science and engineering. These techniques address shortcomings in existing methods and should allow more efficient, robust, and accurate computer simulations in a number of critical applications. One such application is the supersonic flow problem, which is of great importance in designing astrophysical jets and also in the simulation of reentry vehicle for space flight modeling. Another application is the study of the magneto hydrodynamic systems, which arises in space weather modeling, in modeling electric propulsion sources, and in systems involving plasma (such as plasma-opening switches, flight control via plasma, plasma assisted combustion). These problems are strategically important for the design of the next generation devices of great industrial and commercial value.
本提案的主要重点是发展和分析一种适用于双曲守恒律的高阶数值格式的新的参数化最大原理保持通量限制器技术。我们还将设计一种通量限制技术来获得高阶保正格式。保持最大原理和正性的数值格式是可取的,因为物理上相关的解具有这些性质。该方法的发展基于有限差分方法,具有计算成本低,计算精度高的优点,特别是在多维模拟中。在提出的框架内,可以设计出保留高阶有限差分、有限体积和不连续Galerkin格式的保守极大值原理,从而允许显着大的CFL数,从而提高计算模拟效率。本文研究的一些重要应用包括可压缩欧拉方程、磁流体动力学方程和Vlasov-Maxwell方程。研究人员正在开发新的计算技术,可以应用于科学和工程中的困难和非常重要的问题。这些技术解决了现有方法的缺点,并在许多关键应用中允许更有效、更健壮和更准确的计算机模拟。其中一个应用是超音速流动问题,它在设计天体物理射流和再入飞行器的仿真中具有重要意义。另一个应用是磁流体动力系统的研究,它出现在空间天气建模、电力推进源建模和涉及等离子体的系统(如等离子体打开开关、通过等离子体的飞行控制、等离子体辅助燃烧)中。这些问题对于设计具有重大工业和商业价值的下一代器件具有重要的战略意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhengfu Xu其他文献
Network Formation and Ion Conduction in Ionomer Membranes
离聚物膜中的网络形成和离子传导
- DOI:
10.1149/ma2012-02/13/1330 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
K. Promislow;A. Christlieb;Jaylan Jones;Zhengfu Xu;N. Gavish - 通讯作者:
N. Gavish
Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem
- DOI:
10.1090/s0025-5718-2013-02788-3 - 发表时间:
2013-12 - 期刊:
- 影响因子:0
- 作者:
Zhengfu Xu - 通讯作者:
Zhengfu Xu
A PDE-Based Regularization Algorithm Toward Reducing Speckle Tracking Noise
一种基于偏微分方程的减少散斑跟踪噪声的正则化算法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Li Guo;Yan Xu;Zhengfu Xu;Jingfeng Jiang - 通讯作者:
Jingfeng Jiang
Vanishing viscosity approximation to hyperbolic conservation laws
双曲守恒定律的消失粘度近似
- DOI:
10.1016/j.jde.2008.01.005 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Wen Shen;Zhengfu Xu - 通讯作者:
Zhengfu Xu
Total variation bounded flux limiters for high order finite difference schemes solving one-dimensional scalar conservation laws
求解一维标量守恒定律的高阶有限差分格式的全变分有界通量限制器
- DOI:
10.1090/mcom/3364 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Sulin Wang;Zhengfu Xu - 通讯作者:
Zhengfu Xu
Zhengfu Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhengfu Xu', 18)}}的其他基金
Symposium on Computational Modeling and Image Processing of Biomedical Problems
生物医学问题计算建模与图像处理研讨会
- 批准号:
1931844 - 财政年份:2019
- 资助金额:
$ 22.63万 - 项目类别:
Standard Grant
相似海外基金
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
- 批准号:
2348475 - 财政年份:2024
- 资助金额:
$ 22.63万 - 项目类别:
Standard Grant
TUBERSCAN-VENTURE: Delivering a commercially-viable, non-destructive, data driven pipeline to quantify root crops during growth to realise maximum marketable yield and help reduce waste, contributing to net zero emissions
TUBERSCAN-VENTURE:提供商业上可行的、非破坏性的、数据驱动的管道,以量化生长过程中的块根作物,以实现最大的市场产量并帮助减少浪费,从而实现净零排放
- 批准号:
10092039 - 财政年份:2024
- 资助金额:
$ 22.63万 - 项目类别:
Collaborative R&D
Collaborative Research: Studying Carbon Injection and the Silicate Weathering Feedback over the Paleocene Eocene Thermal Maximum Using Ca Isotopes and Modeling
合作研究:利用 Ca 同位素和模拟研究古新世始新世热最大值期间的碳注入和硅酸盐风化反馈
- 批准号:
2233961 - 财政年份:2023
- 资助金额:
$ 22.63万 - 项目类别:
Standard Grant
Estimation of probability and maximum potential intensity of extreme coastal hazards using global and regional integrated models
使用全球和区域综合模型估计极端沿海灾害的概率和最大潜在强度
- 批准号:
23H00196 - 财政年份:2023
- 资助金额:
$ 22.63万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Role and universality of large-scale flow structures in maximum drag-reducing flows of surfactant solutions
大规模流动结构在表面活性剂溶液最大减阻流动中的作用和普遍性
- 批准号:
23H01342 - 财政年份:2023
- 资助金额:
$ 22.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Postdoctoral Fellowship: OPP-PRF: Assessing the Contribution of Permafrost-derived Trace Gases in Greenhouse Warming since the Last Glacial Maximum
博士后奖学金:OPP-PRF:评估自末次盛冰期以来永久冻土衍生的微量气体对温室变暖的贡献
- 批准号:
2317931 - 财政年份:2023
- 资助金额:
$ 22.63万 - 项目类别:
Standard Grant
Calculation and the Verification of the maximum electric power of Microbial Fuel Cells by Minimizing the Internal Resistance Using the Mathematical Model
微生物燃料电池内阻最小化最大电功率的数学模型计算与验证
- 批准号:
23K11483 - 财政年份:2023
- 资助金额:
$ 22.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Laparoscopic surgical dynamic navigation using maximum likelihood estimation of organ deformations
使用器官变形最大似然估计的腹腔镜手术动态导航
- 批准号:
23H00480 - 财政年份:2023
- 资助金额:
$ 22.63万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: Studying Carbon Injection and the Silicate Weathering Feedback over the Paleocene Eocene Thermal Maximum Using Ca Isotopes and Modeling
合作研究:利用 Ca 同位素和模拟研究古新世始新世热最大值期间的碳注入和硅酸盐风化反馈
- 批准号:
2233962 - 财政年份:2023
- 资助金额:
$ 22.63万 - 项目类别:
Standard Grant
Peopling of the Tularosa Playa during the Last Glacial Maximum
末次盛冰期图拉罗萨海滩的人口增长
- 批准号:
AH/X001326/1 - 财政年份:2023
- 资助金额:
$ 22.63万 - 项目类别:
Research Grant