Maximum Bound Principle-Preserving Time Integration Methods for Some Semilinear Parabolic Equations
一些半线性抛物方程的最大有界原理-保时积分方法
基本信息
- 批准号:2109633
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will focus on the algorithms and analysis for a class of equations with applications in fluids dynamics, solid mechanics, materials science, chemistry, and cell biology to image and data sciences. Specifically, a class of semilinear parabolic equations will be considered, and the focus will be on ensuring that the computational solutions possess particular important properties called the time-invariant maximum bound principle (MBP). Such properties are important for the models of grain growth and coarsening, thin film microstructure, crystal growth, dislocation-solute interactions, and image restoration and deblurring. The project will design and analyze efficient and accurate MBP-preserving time integration methods of high-order accuracy. The project will develop and disseminate software and provide an interdisciplinary training opportunity for graduate students.The proposed activities contain diverse research topics in computational and applied mathematics, ranging from algorithm design, numerical analysis, and efficient implementation to practical applications in science and engineering. Specifically, the project presents an important step toward developing and analyzing efficient and high-order accurate MBP-preserving time integration methods. Rigorous analysis for a wide class of semilinear parabolic equations within or beyond the current analytical framework will be carried out. This project will not only lead to significant innovations in numerical tools and computer codes for solving these types of equations, but also offer new insights into a number of outstanding theoretical issues on MBP preservation and energy stability in both time-continuous and time-discrete settings. The goals include the design and analysis of linear schemes with high-order accuracy based on the Runge-Kutta integrating factor and the modified scalar auxiliary variable approaches. The project will also extend and develop MBP-preserving time integration methods for some important phase field models beyond the existing analytical framework, including but not limited to, the mass-conserving Allen-Cahn equations with different types of constraints, the convective Allen-Cahn equation and the coupled Navier-Stokes/Allen-Cahn system. These research problems are very useful and challenging with important applications in science and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将重点关注一类方程的算法和分析,这些方程在流体动力学、固体力学、材料科学、化学、细胞生物学、图像和数据科学等领域都有应用。具体来说,将考虑一类半线性抛物方程,重点将放在确保计算解具有称为时不变最大界原理(MBP)的特殊重要性质上。这些特性对于晶粒生长和粗化、薄膜微观结构、晶体生长、位错-溶质相互作用以及图像恢复和去模糊等模型都是重要的。本课题将设计和分析高效、准确的高阶精度保mbp时间积分方法。该项目将开发和传播软件,并为研究生提供跨学科的培训机会。建议的活动包括计算和应用数学的各种研究课题,从算法设计,数值分析,有效实现到科学和工程中的实际应用。具体而言,该项目为开发和分析高效、高阶精确的保mbp时间积分方法迈出了重要的一步。在当前的分析框架内或之外,将对一类广泛的半线性抛物方程进行严格的分析。该项目不仅将导致求解这些类型方程的数值工具和计算机代码的重大创新,而且还将为时间连续和时间离散设置下MBP保存和能量稳定性的一些突出理论问题提供新的见解。目标是设计和分析基于龙格-库塔积分因子和改进的标量辅助变量方法的高阶精度线性格式。本项目还将在现有的分析框架之外,扩展和发展一些重要相场模型的保mbp时间积分方法,包括但不限于具有不同类型约束的保质量Allen-Cahn方程、对流Allen-Cahn方程和耦合Navier-Stokes/Allen-Cahn系统。这些研究问题在科学和工程领域具有重要的应用价值和挑战性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low regularity integrators for semilinear parabolic equations with maximum bound principles
- DOI:10.1007/s10543-023-00946-2
- 发表时间:2022-11
- 期刊:
- 影响因子:1.5
- 作者:Cao-Kha Doan;Thi-Thao-Phuong Hoang;L. Ju;Katharina Schratz
- 通讯作者:Cao-Kha Doan;Thi-Thao-Phuong Hoang;L. Ju;Katharina Schratz
Trace transfer-based diagonal sweeping domain decomposition method for the Helmholtz equation: Algorithms and convergence analysis
- DOI:10.1016/j.jcp.2022.110980
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:W. Leng;L. Ju
- 通讯作者:W. Leng;L. Ju
Stabilized Exponential-SAV Schemes Preserving Energy Dissipation Law and Maximum Bound Principle for The Allen–Cahn Type Equations
- DOI:10.1007/s10915-022-01921-9
- 发表时间:2022-03
- 期刊:
- 影响因子:2.5
- 作者:L. Ju;Xiao Li;Zhonghua Qiao
- 通讯作者:L. Ju;Xiao Li;Zhonghua Qiao
Operator splitting based structure-preserving numerical schemes for the mass-conserving convective Allen-Cahn equation
- DOI:10.1016/j.jcp.2022.111695
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Rihui Lan;Jingwei Li;Yongyong Cai;L. Ju
- 通讯作者:Rihui Lan;Jingwei Li;Yongyong Cai;L. Ju
Unified Solution of Conjugate Fluid and Solid Heat Transfer – Part I. Solid Heat Conduction
共轭流体与固体传热的统一解——第一部分:固体传热
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1.4
- 作者:Li, Shujie;Ju, Lili
- 通讯作者:Ju, Lili
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lili Ju其他文献
Conservative explicit local time-stepping schemes for the shallow water equations
浅水方程的保守显式局部时间步进方案
- DOI:
10.1016/j.jcp.2019.01.006 - 发表时间:
2019-04 - 期刊:
- 影响因子:0
- 作者:
Thi-Thao-Phuong Hoang;Wei Leng;Lili Ju;Zhu Wang;Konstantin Pieper - 通讯作者:
Konstantin Pieper
Unconditionally original energy-dissipative and MBP-preserving Crank-Nicolson scheme for the Allen-Cahn equation with general mobility
针对具有一般迁移率的艾伦 - 卡恩方程的无条件原始能量耗散且保持平均曲率运动(MBP)的克兰克 - 尼科尔森格式
- DOI:
10.1016/j.camwa.2025.04.021 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:2.500
- 作者:
Dianming Hou;Hui Liu;Lili Ju - 通讯作者:
Lili Ju
A novel bond-based nonlocal diffusion model with matrix-valued coefficients in non-divergence form and its collocation discretization<span class="inline-figure"><img src="//ars.els-cdn.com/content/image/1-s2.0-S0898122124003432-fx001.jpg" width="17" height="19" /></span>
- DOI:
10.1016/j.camwa.2024.08.002 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Hao Tian;Junke Lu;Lili Ju - 通讯作者:
Lili Ju
Dynamically regularized Lagrange multiplier schemes with energy dissipation for the incompressible Navier-Stokes equations
- DOI:
10.1016/j.jcp.2024.113550 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:
- 作者:
Cao-Kha Doan;Thi-Thao-Phuong Hoang;Lili Ju;Rihui Lan - 通讯作者:
Rihui Lan
Unconditionally Energy Stable Linear Schemes for the Diffuse Interface Model with Peng–Robinson Equation of State
- DOI:
https://doi.org/10.1007/s10915-017-0576-7 - 发表时间:
2018 - 期刊:
- 影响因子:
- 作者:
Hongwei Li;Lili Ju;Chenfei Zhang;Qiujin Peng - 通讯作者:
Qiujin Peng
Lili Ju的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lili Ju', 18)}}的其他基金
Study on Localized Exponential Time Differencing Methods for Evolution Partial Differential Equations
演化偏微分方程的局部指数时差法研究
- 批准号:
1818438 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Fast and Stable Compact Exponential Time Difference Based Methods for Some Parabolic Equations
一些抛物方程的快速稳定的基于紧指数时差的方法
- 批准号:
1521965 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Numerical Improvements, Mesh Adaptation and Parameter Identification for Parallel Finite Element Stokes Ice Sheet Modeling
并行有限元斯托克斯冰盖建模的数值改进、网格自适应和参数识别
- 批准号:
1215659 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Study on Algorithms and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分算法及应用研究
- 批准号:
0913491 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Some Problems on Analyses and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分分析及应用的几个问题
- 批准号:
0609575 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Low-dimensional material-based nanolaser using photonic bound states in the continuum
使用连续体中的光子束缚态的基于低维材料的纳米激光器
- 批准号:
23K26155 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
- 批准号:
2349884 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
- 批准号:
2349883 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Theoretical approach to weakly bound triplet-triplet multiexciton in intramolecular singlet fission chromophores
分子内单线裂变发色团中弱结合三线态-三线态多激子的理论方法
- 批准号:
2301372 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Course-Based Undergraduate Research Experiences for Place-Bound Students to Promote Student Persistence
为本地学生提供基于课程的本科生研究经验,以促进学生的坚持
- 批准号:
2246468 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Novel approach to identify RNA-bound small molecules in vivo
体内鉴定 RNA 结合小分子的新方法
- 批准号:
10646626 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
The Role of Inosine Monophosphate Dehydrogenase in mRNA Regulation: Identification of mRNAs Bound and Functional Consequences
肌苷单磷酸脱氢酶在 mRNA 调节中的作用:鉴定 mRNA 结合和功能后果
- 批准号:
10796269 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
BRITE Pivot: Learning-based Optimal Control of Streamflow with Potentially Infeasible Time-bound Constraints for Flood Mitigation
BRITE Pivot:基于学习的水流优化控制,具有可能不可行的防洪时限约束
- 批准号:
2226936 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Phoretic Transport of Membrane-Bound Biological Colloids in Complex Environments
职业:复杂环境中膜结合生物胶体的电泳传输
- 批准号:
2237177 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
"Collaborative Research: Studying Science Curiosity and Computational Thinking in an eTextile Upward Bound Curriculum"
“合作研究:在电子纺织品向上发展课程中研究科学好奇心和计算思维”
- 批准号:
2241700 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant














{{item.name}}会员




