Collaborative Research: Visual Cortex on Silicon

合作研究:硅上视觉皮层

基本信息

  • 批准号:
    1317407
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

The human vision system understands and interprets complex scenes for a wide range of visual tasks in real-time while consuming less than 20 Watts of power. This Expeditions-in-Computing project explores holistic design of machine vision systems that have the potential to approach and eventually exceed the capabilities of human vision systems. This will enable the next generation of machine vision systems to not only record images but also understand visual content. Such smart machine vision systems will have a multi-faceted impact on society, including visual aids for visually impaired persons, driver assistance for reducing automotive accidents, and augmented reality for enhanced shopping, travel, and safety. The transformative nature of the research will inspire and train a new generation of students in inter-disciplinary work that spans neuroscience, computing and engineering discipline.While several machine vision systems today can each successfully perform one or a few human tasks ? such as detecting human faces in point-and-shoot cameras ? they are still limited in their ability to perform a wide range of visual tasks, to operate in complex, cluttered environments, and to provide reasoning for their decisions. In contrast, the mammalian visual cortex excels in a broad variety of goal-oriented cognitive tasks, and is at least three orders of magnitude more energy efficient than customized state-of-the-art machine vision systems. The proposed research envisions a holistic design of a machine vision system that will approach the cognitive abilities of the human cortex, by developing a comprehensive solution consisting of vision algorithms, hardware design, human-machine interfaces, and information storage. The project aims to understand the fundamental mechanisms used in the visual cortex to enable the design of new vision algorithms and hardware fabrics that can improve power, speed, flexibility, and recognition accuracies relative to existing machine vision systems. Towards this goal, the project proposes an ambitious inter-disciplinary research agenda that will (i) understand goal-directed visual attention mechanisms in the brain to design task-driven vision algorithms; (ii) develop vision theory and algorithms that scale in performance with increasing complexity of a scene; (iii) integrate complementary approaches in biological and machine vision techniques; (iv) develop a new-genre of computing architectures inspired by advances in both the understanding of the visual cortex and the emergence of electronic devices; and (v) design human-computer interfaces that will effectively assist end-users while preserving privacy and maximizing utility. These advances will allow us to replace current-day cameras with cognitive visual systems that more intelligently analyze and understand complex scenes, and dynamically interact with users.Machine vision systems that understand and interact with their environment in ways similar to humans will enable new transformative applications. The project will develop experimental platforms to: (1) assist visually impaired people; (2) enhance driver attention; and (3) augment reality to provide enhanced experience for retail shopping or a vacation visit, and enhanced safety for critical public infrastructure. This project will result in education and research artifacts that will be disseminated widely through a web portal and via online lecture delivery. The resulting artifacts and prototypes will enhance successful ongoing outreach programs to under-represented minorities and the general public, such as museum exhibits, science fairs, and a summer camp aimed at K-12 students. It will also spur similar new outreach efforts at other partner locations. The project will help identify and develop course material and projects directed at instilling interest in computing fields for students in four-year colleges. Partnerships with two Hispanic serving institutes, industry, national labs and international projects are also planned.
人类视觉系统可以实时理解和解释各种视觉任务的复杂场景,同时消耗不到20瓦的功率。这个计算探险项目探索了机器视觉系统的整体设计,这些系统有可能接近并最终超过人类视觉系统的能力。这将使下一代机器视觉系统不仅可以记录图像,还可以理解视觉内容。这种智能机器视觉系统将对社会产生多方面的影响,包括为视障人士提供视觉辅助,为减少汽车事故提供驾驶辅助,以及增强购物、旅行和安全的增强现实。这项研究的变革性将激发和培养新一代从事跨神经科学、计算机和工程学科跨学科工作的学生。虽然现在有几个机器视觉系统可以成功地执行一个或几个人工任务?比如用傻瓜相机检测人脸?在执行广泛的视觉任务、在复杂、混乱的环境中操作以及为决策提供推理的能力方面,它们的能力仍然有限。相比之下,哺乳动物的视觉皮层在各种各样的目标导向的认知任务中表现出色,并且比定制的最先进的机器视觉系统至少节能三个数量级。提出的研究设想了一个机器视觉系统的整体设计,将通过开发一个由视觉算法、硬件设计、人机界面和信息存储组成的综合解决方案,接近人类皮层的认知能力。该项目旨在了解视觉皮层中使用的基本机制,以实现新的视觉算法和硬件结构的设计,从而提高相对于现有机器视觉系统的功率、速度、灵活性和识别精度。为了实现这一目标,该项目提出了一个雄心勃勃的跨学科研究议程,该议程将(i)了解大脑中目标导向的视觉注意机制,以设计任务驱动的视觉算法;(ii)发展视觉理论和算法,随着场景复杂性的增加而扩展性能;(iii)整合生物和机器视觉技术的互补方法;(iv)在对视觉皮层理解的进步和电子设备的出现的启发下,开发一种新型的计算架构;(v)设计人机界面,在保护隐私和最大化效用的同时有效地帮助最终用户。这些进步将使我们能够用认知视觉系统取代当前的摄像头,这种系统可以更智能地分析和理解复杂的场景,并与用户动态交互。以类似于人类的方式理解环境并与之交互的机器视觉系统将实现新的变革性应用。该项目将开发实验平台,以:(1)协助视障人士;(2)增强驾驶员注意力;(3)增强现实为零售购物或度假旅游提供增强体验,并增强关键公共基础设施的安全性。这个项目将产生教育和研究成果,这些成果将通过门户网站和在线讲座广泛传播。由此产生的文物和原型将成功地促进正在进行的面向少数民族和公众的推广项目,如博物馆展览、科学博览会和针对K-12学生的夏令营。它还将在其他合作伙伴地区推动类似的新推广工作。该项目将帮助确定和开发课程材料和项目,旨在培养四年制大学学生对计算机领域的兴趣。还计划与两个西班牙裔服务机构、工业、国家实验室和国际项目建立伙伴关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gert Cauwenberghs其他文献

A translinear SiGe BiCMOS current-controlled oscillator with 80 Hz–800 MHz tuning range
1.1 TMACS/mW Load-Balanced Resonant Charge-Recycling Array Processor
1.1 TMACS/mW负载平衡谐振电荷回收阵列处理器
Development and Characterization of Zinc Dry Electrodes for Wearable Electrophysiology
用于可穿戴电生理学的锌干电极的开发和表征
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cassia Rizq;Alessandro D’Amico;Aidan Truel;Joelle Faybishenko;Min Suk Lee;Jeong;Gert Cauwenberghs;V. D. Sa
  • 通讯作者:
    V. D. Sa
An Exploration of Optimal Parameters for Efficient Blind Source Separation of EEG Recordings Using AMICA
使用 AMICA 进行 EEG 记录高效盲源分离的最佳参数探索
Bio-plausible Learning-on-Chip with Selector-less Memristive Crossbars
具有无选择器忆阻交叉开关的生物合理片上学习

Gert Cauwenberghs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gert Cauwenberghs', 18)}}的其他基金

Collaborative Research: FET: Medium: Energy-Efficient Persistent Learning-in-Memory with Quantum Tunneling Dynamic Synapses
合作研究:FET:中:具有量子隧道动态突触的节能持久内存学习
  • 批准号:
    2208771
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CRI: CI-NEW: Trainable Reconfigurable Development Platform for Large-Scale Neuromorphic Cognitive Computing
CRI:CI-NEW:用于大规模神经形态认知计算的可训练可重构开发平台
  • 批准号:
    1823366
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
PFI:BIC - Unobtrusive Neurotechnology and Immersive Human-Computer Interface for Enhanced Learning
PFI:BIC - 用于增强学习的低调神经技术和沉浸式人机界面
  • 批准号:
    1719130
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
EFRI-M3C: Distributed Brain Dynamics in Human Motor Control
EFRI-M3C:人类运动控制中的分布式大脑动力学
  • 批准号:
    1137279
  • 财政年份:
    2011
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
SGER: Wireless EEG Brain Interface for Extended Interactive Learning
SGER:用于扩展交互式学习的无线脑电图脑接口
  • 批准号:
    0847752
  • 财政年份:
    2008
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Acoustic Target Identification and Localization
声学目标识别和定位
  • 批准号:
    0434161
  • 财政年份:
    2004
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Trainable Visual Aids for Object Detection and Identification
用于物体检测和识别的可训练视觉辅助工具
  • 批准号:
    0209289
  • 财政年份:
    2002
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Microscale Adaptive Optical Wavefront Correction
微尺度自适应光学波前校正
  • 批准号:
    0010026
  • 财政年份:
    2001
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CAREER: Engineering Research and Education in Analog VLSI Parallel Computational Systems
职业:模拟 VLSI 并行计算系统的工程研究和教育
  • 批准号:
    9702346
  • 财政年份:
    1997
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Using Machine Learning to Improve Visual Problem-Solving in Chemistry Education
协作研究:利用机器学习提高化学教育中的视觉问题解决能力
  • 批准号:
    2235790
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Indigenous Northern Landscapes, Visual Repatriation, and Collaborative Knowledge Exchange
合作研究:北方本土景观、视觉归还和合作知识交流
  • 批准号:
    2330924
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Visual Information about surface curvature from patterns of image shading and contours
合作研究:从图像阴影和轮廓图案中获取有关表面曲率的视觉信息
  • 批准号:
    2238180
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Visual Information about surface curvature from patterns of image shading and contours
合作研究:从图像阴影和轮廓图案中获取有关表面曲率的视觉信息
  • 批准号:
    2238179
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Modeling and Mitigating Confirmation Bias in Visual Data Analysis
合作研究:HCC:媒介:可视化数据分析中的建模和减轻确认偏差
  • 批准号:
    2311575
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Indigenous Northern Landscapes, Visual Repatriation, and Collaborative Knowledge Exchange
合作研究:北方本土景观、视觉归还和合作知识交流
  • 批准号:
    2330923
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Indigenous Northern Landscapes, Visual Repatriation, and Collaborative Knowledge Exchange
合作研究:北方本土景观、视觉归还和合作知识交流
  • 批准号:
    2330922
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Using Machine Learning to Improve Visual Problem-Solving in Chemistry Education
协作研究:利用机器学习提高化学教育中的视觉问题解决能力
  • 批准号:
    2235485
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Modeling and Mitigating Confirmation Bias in Visual Data Analysis
合作研究:HCC:媒介:可视化数据分析中的建模和减轻确认偏差
  • 批准号:
    2311574
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding how visual features of misinformation influence credibility perceptions
协作研究:SaTC:核心:小:了解错误信息的视觉特征如何影响可信度认知
  • 批准号:
    2150723
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了