Microscale Adaptive Optical Wavefront Correction

微尺度自适应光学波前校正

基本信息

  • 批准号:
    0010026
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2005-06-30
  • 项目状态:
    已结题

项目摘要

Phase distortions due to inhomogeneities in the optical path severely limit the perforinancc of a large class of optical systems for ground-to-ground and space communications, imaging through the atmosphere, medical laser beam focusing, among others. Demands on increased spatial resolutions and larger bandwidths call for an integrated approach to adaptive optics that modulates the wavefront in parallel at microscopic scale.This collaborative effort combines expertise in adaptive optics, analog parallel very-large scale integrated (VLSI) niicrosys-tems, microfabrication and liquid-crystal molecular systems to create a new generation of adaptive micro-optical systems for high-resolution wavefront correction, with over 10,000 fully autonomous control elements integrated on a single, hybrid opti-cal/electronic chip. Autonomy is essential for high-bandwidth operation, and is obtained by integrating all adaptive functions directly on-chip.At the architectural level, model-free adaptive control is implemented using parallel perturbation stochastic gradient descent optimization of an arbitrary, externally provided metric of system performance. At the physical level, high-speed wavefront control at micro-scale resolution is obtained by integrating a new type of fast nematic liquid-crystal (LC), operating at kilohertz- range bandwidths, onto the adaptive control chip. Silicon-on-sapphire (SoS) technology with ultra-thin silicon (UTSi) transis-tors provides a high-quality, low-noise, transparent active medium for high-density optical and electronic integration. We will investigate microscale structures of LC material sandwiched in between two transparent SoS wafers, implementing arrays of phase modulators with active electrodes implementing the adaptive algorithms in parallel. directly interfacing with the wave- front. The architectural and technological innovations combine to yield a projected system performance in excess of 108 control updates/sec. at least a factor 1,000 better than presently existing adaptive optics systems in speed, density and cost.This program integrates research and education in a sequence of project-intensive courses, where teams of graduate and undergraduate students learn to design. prototype and test adaptive optics co-processors, implemented in analog VLSI and fabricated through MOSIS. The adaptive co-processors will be configured to externally control a variety of fast LC and other spatial light phase modulators, available for experimentation at the Army Research Laboratory (ARL). In addition, we will make use of full-size UTSi SoS wafers provided by Peregrine Semiconductor, custom-fabricated in a special arrangement with Hopkins, to prototype a fully integrated version of consistent optical quality. The already polished SoS wafers will be post-processed at the JHU Microfabrication Laboratory and at Boulder Nonlinear Systems. Inc.. to pattern and deposit fast nematic LC in contact with SoS for fast spatial light phase modulation. The prototyped adaptive micro-optical systems will be experimentally demonstrated on various adaptive optics and imaging tasks including laser beam focusing and stabilization for optical communications.
由于光路中的不均匀性引起的相位失真严重限制了用于地对地和空间通信、通过大气成像、医疗激光束聚焦等的一大类光学系统的性能。随着空间分辨率和带宽的提高,对自适应光学的集成化要求越来越高,这种集成化的自适应光学系统可以在微观尺度上对波前进行并行调制。这项研究结合了自适应光学、模拟并行超大规模集成(VLSI)微系统、微细加工和液晶分子系统的专业知识,创造了新一代用于高分辨率波前校正的自适应微光学系统。超过10,000个完全自主的控制元件集成在一个单一的混合光学/电子芯片上。自主性对于高带宽操作是必不可少的,并且通过直接在Chip. In架构级别上集成所有自适应功能来获得,无模型自适应控制使用并行扰动随机梯度下降优化任意外部提供的系统性能度量来实现。在物理层面上,高速波前控制在微尺度分辨率是通过集成一种新型的快速液晶(LC),工作在千赫范围的带宽,到自适应控制芯片。采用超薄硅(UTSi)晶体管的蓝宝石上硅(SoS)技术为高密度光学和电子集成提供了高质量、低噪声、透明的有源介质。我们将研究夹在两个透明的SoS晶片之间的LC材料的微尺度结构,实现相位调制器阵列与有源电极并行实现自适应算法。直接与波阵面接触。结构和技术创新结合联合收割机,产生超过每秒108次控制更新的预计系统性能。在速度、密度和成本方面比现有的自适应光学系统至少高出1,000倍。该计划将研究和教育整合在一系列项目密集型课程中,研究生和本科生团队学习设计。原型和测试自适应光学协处理器,在模拟超大规模集成电路实现,并通过MOSIS制造。自适应协处理器将被配置为外部控制各种快速LC和其他空间光相位调制器,可用于陆军研究实验室(ARL)的实验。此外,我们将利用Peregrine Semiconductor提供的全尺寸UTSi SoS晶圆,与霍普金斯公司进行特殊安排定制,以制作具有一致光学质量的完全集成版本的原型。已经抛光的SoS晶片将在JHU微加工实验室和Boulder非线性系统进行后处理。门票已确认图案化并存款与SoS接触的快速向列相LC,用于快速空间光相位调制。原型自适应微光学系统将在各种自适应光学和成像任务上进行实验演示,包括用于光通信的激光束聚焦和稳定。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gert Cauwenberghs其他文献

A translinear SiGe BiCMOS current-controlled oscillator with 80 Hz–800 MHz tuning range
1.1 TMACS/mW Load-Balanced Resonant Charge-Recycling Array Processor
1.1 TMACS/mW负载平衡谐振电荷回收阵列处理器
An Exploration of Optimal Parameters for Efficient Blind Source Separation of EEG Recordings Using AMICA
使用 AMICA 进行 EEG 记录高效盲源分离的最佳参数探索
Development and Characterization of Zinc Dry Electrodes for Wearable Electrophysiology
用于可穿戴电生理学的锌干电极的开发和表征
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cassia Rizq;Alessandro D’Amico;Aidan Truel;Joelle Faybishenko;Min Suk Lee;Jeong;Gert Cauwenberghs;V. D. Sa
  • 通讯作者:
    V. D. Sa
Bio-plausible Learning-on-Chip with Selector-less Memristive Crossbars
具有无选择器忆阻交叉开关的生物合理片上学习

Gert Cauwenberghs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gert Cauwenberghs', 18)}}的其他基金

Collaborative Research: FET: Medium: Energy-Efficient Persistent Learning-in-Memory with Quantum Tunneling Dynamic Synapses
合作研究:FET:中:具有量子隧道动态突触的节能持久内存学习
  • 批准号:
    2208771
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CRI: CI-NEW: Trainable Reconfigurable Development Platform for Large-Scale Neuromorphic Cognitive Computing
CRI:CI-NEW:用于大规模神经形态认知计算的可训练可重构开发平台
  • 批准号:
    1823366
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
PFI:BIC - Unobtrusive Neurotechnology and Immersive Human-Computer Interface for Enhanced Learning
PFI:BIC - 用于增强学习的低调神经技术和沉浸式人机界面
  • 批准号:
    1719130
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Visual Cortex on Silicon
合作研究:硅上视觉皮层
  • 批准号:
    1317407
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
EFRI-M3C: Distributed Brain Dynamics in Human Motor Control
EFRI-M3C:人类运动控制中的分布式大脑动力学
  • 批准号:
    1137279
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SGER: Wireless EEG Brain Interface for Extended Interactive Learning
SGER:用于扩展交互式学习的无线脑电图脑接口
  • 批准号:
    0847752
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Acoustic Target Identification and Localization
声学目标识别和定位
  • 批准号:
    0434161
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Trainable Visual Aids for Object Detection and Identification
用于物体检测和识别的可训练视觉辅助工具
  • 批准号:
    0209289
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Engineering Research and Education in Analog VLSI Parallel Computational Systems
职业:模拟 VLSI 并行计算系统的工程研究和教育
  • 批准号:
    9702346
  • 财政年份:
    1997
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Adaptive systems chemistry for optical sensing of drugs and proteins
用于药物和蛋白质光学传感的自适应系统化学
  • 批准号:
    569800-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
EFRI BRAID: Optical Neural Co-Processors for Predictive and Adaptive Brain Restoration and Augmentation
EFRI BRAID:用于预测性和适应性大脑恢复和增强的光学神经协处理器
  • 批准号:
    2223495
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
PREDICTOR - PRE-symptomatic DIagnosis through adaptive optiCal Tomographic sensing Of the Retina
PREDICTOR - 通过视网膜的自适应光学断层扫描传感进行症状前诊断
  • 批准号:
    EP/W004534/1
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Adaptive optical microscopy for high-accuracy recording of neural activity in vivo
用于高精度记录体内神经活动的自适应光学显微镜
  • 批准号:
    10543177
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Adaptive optical microscopy for high-accuracy recording of neural activity in vivo
用于高精度记录体内神经活动的自适应光学显微镜
  • 批准号:
    10048013
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Adaptive optical microscopy for high-accuracy recording of neural activity in vivo
用于高精度记录体内神经活动的自适应光学显微镜
  • 批准号:
    10324548
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Pathological clarification and development of novel treatment in neovascular age-related macular degeneration using adaptive-optics optical coherence tomography
使用自适应光学相干断层扫描对新生血管性年龄相关性黄斑变性进行病理学澄清和新疗法的开发
  • 批准号:
    21K09716
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adaptive and Integrated Control of Optical Routing Metro Networks
光路由城域网的自适应集成控制
  • 批准号:
    20H02150
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Adaptive strategy of soft bodies in gelatinous zooplankton: ultrastructural and optical approaches
凝胶状浮游动物软体的自适应策略:超微结构和光学方法
  • 批准号:
    20K06213
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SIGHT: A compact adaptive optics technology demonstrator for all-sky panchromatic optical/infrared spectroscopy
SIGHT:用于全天空全色光学/红外光谱的紧凑型自适应光学技术演示器
  • 批准号:
    2010005
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了