Computation of crowded geodesics on the universal Teichmueller space for planar shape matching in computer vision
通用 Teichmueller 空间上的拥挤测地线计算,用于计算机视觉中的平面形状匹配
基本信息
- 批准号:1318427
- 负责人:
- 金额:$ 32.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2015-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantifying the (dis)similarity between two shapes is a central problem in computer vision. One distance metric on the space of planar shapes is realized by identifying this space as a subset of the Universal Teichmueller Space, and equipping it with the Weil-Petersson metric. This results in a metric that is scale- and translation-invariant on shapes, and has unique geodesic flow between two shape endpoints. The work of this proposal develops robust computational methods for the computation of metric distances and geodesics between shapes on this space. The major difficulty lies in computations involving "crowded" shapes, i.e., those with elongated, winding, or extended protrusions. Such shapes stymie finite-precision computations because direct algorithms suffer from severe roundoff error. The major thrusts of this proposal develop algorithmic methodologies to address roundoff error and related issues: The Zipper conformal mapping algorithm will be augmented to produce accurate conformal maps for crowded shapes. The velocity field representation on a geodesic will be rewritten into a form that is resistant to roundoff error. The geodesic equation will be transformed into a expression that takes advantage of the aforementioned velocity field transformation, and can effectively flow between crowded shapes. The final phase of this project will demonstrate accurate geodesic flow and distance computations between crowded shapes. The methods developed under this project can be applied to several related problems in scientific computing: solutions to differential equations on irregular geometries through conformal mapping, conservative integration methods with ill-conditioned particle systems, and moving-mesh kernel approximations.The work of this project can contribute to far-reaching applications in scientific and computer vision problems: automated object recognition (e.g. projectile identification), outline classification (determination of an animal's species), medical imaging (usage of MRI to diagnose dementia and related diseases), and artificial intelligence (visual recognition and interpretation) to name a few. All computational deliverables (computer code, example simulations, documentation) will be made publicly available. Through the engagement of students in related research tasks, this project will contribute to the educational development of future engineers, mathematicians, and computer scientists.
量化两个形状之间的(不)相似性是计算机视觉中的一个核心问题。平面形状空间上的一个距离度量是通过将该空间识别为通用Teichmueller空间的子集并为其配备Weil-Petersson度量来实现的。这导致了一个度量,是规模和比例不变的形状,并具有独特的测地线流之间的两个形状端点。该提案的工作开发了强大的计算方法,用于计算该空间上形状之间的度量距离和测地线。主要困难在于涉及“拥挤”形状的计算,即,那些具有细长的、缠绕的或延伸的突起的。这种形状阻碍了有限精度的计算,因为直接算法遭受严重的舍入误差。该提案的主要目标是开发算法方法来解决圆形误差和相关问题:Zipper保角映射算法将被增强,以产生拥挤形状的精确保角映射。速度场在测地线上的表示将被改写成一种能抵抗旋转误差的形式。测地线方程将被转换成一个表达式,该表达式利用了前面提到的速度场变换,并且可以在拥挤的形状之间有效地流动。这个项目的最后阶段将展示精确的测地线流和拥挤形状之间的距离计算。该项目开发的方法可以应用于科学计算中的几个相关问题:通过保角映射解决不规则几何形状的微分方程,病态粒子系统的保守积分方法,以及移动网格核近似。该项目的工作可以在科学和计算机视觉问题中产生深远的应用:自动物体识别(例如,抛射体识别)、轮廓分类(确定动物的种类)、医学成像(使用MRI诊断痴呆症和相关疾病)和人工智能(视觉识别和解释)。所有计算交付成果(计算机代码、示例模拟、文档)都将公开提供。通过学生参与相关的研究任务,该项目将有助于未来的工程师,数学家和计算机科学家的教育发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Akil Narayan其他文献
Energy stable and structure-preserving algorithms for the stochastic Galerkin system of 2D shallow water equations
二维浅水方程随机伽辽金系统的能量稳定且保结构算法
- DOI:
10.1016/j.cma.2025.117932 - 发表时间:
2025-05-15 - 期刊:
- 影响因子:7.300
- 作者:
Yekaterina Epshteyn;Akil Narayan;Yinqian Yu - 通讯作者:
Yinqian Yu
A gradient enhanced ℓ 1 -minimization for sparse approximation of polynomial chaos expansions
多项式混沌展开稀疏逼近的梯度增强 l1 最小化
- DOI:
10.1016/j.jcp.2018.04.026 - 发表时间:
2018 - 期刊:
- 影响因子:4.1
- 作者:
Ling Guo;Akil Narayan;Tao Zhou - 通讯作者:
Tao Zhou
A gradient enhanced L1-minimization for sparse approximation of polynomial chaos expansions
多项式混沌展开稀疏逼近的梯度增强 L1 最小化
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.1
- 作者:
Ling Guo;Akil Narayan;Tao Zhou - 通讯作者:
Tao Zhou
Uncertainty Quantification of the Effect of Variable Conductivity in Ventricular Fibrotic Regions on Ventricular Tachycardia
心室纤维化区域可变电导率对室性心动过速影响的不确定性量化
- DOI:
10.22489/cinc.2023.141 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jake A. Bergquist;Matthias Lange;B. Zenger;Benjamin A. Orkild;Eric Paccione;Eugene Kwan;B. Hunt;Jiawei Dong;Rob S. MacLeod;Akil Narayan;Ravi Ranjan - 通讯作者:
Ravi Ranjan
Fast predictive multi-fidelity prediction with models of quantized fidelity levels
- DOI:
10.1016/j.jcp.2018.10.025 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:
- 作者:
Mani Razi;Robert M. Kirby;Akil Narayan - 通讯作者:
Akil Narayan
Akil Narayan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Akil Narayan', 18)}}的其他基金
CAREER: Optimal Approximation Algorithms in High Dimensions
职业:高维最优逼近算法
- 批准号:
1848508 - 财政年份:2019
- 资助金额:
$ 32.57万 - 项目类别:
Continuing Grant
Computational Methods for Multivariate Orthogonal Polynomials
多元正交多项式的计算方法
- 批准号:
1720416 - 财政年份:2017
- 资助金额:
$ 32.57万 - 项目类别:
Standard Grant
Computation of crowded geodesics on the universal Teichmueller space for planar shape matching in computer vision
通用 Teichmueller 空间上的拥挤测地线计算,用于计算机视觉中的平面形状匹配
- 批准号:
1552238 - 财政年份:2015
- 资助金额:
$ 32.57万 - 项目类别:
Continuing Grant
相似海外基金
Investigating liquid-like mineral phases in crowded media
研究拥挤介质中的液态矿物相
- 批准号:
EP/Y022653/1 - 财政年份:2024
- 资助金额:
$ 32.57万 - 项目类别:
Research Grant
Particle classification and identification in cryoET of crowded cellular environments
拥挤细胞环境中 CryoET 中的颗粒分类和识别
- 批准号:
BB/Y514007/1 - 财政年份:2024
- 资助金额:
$ 32.57万 - 项目类别:
Research Grant
Exploring the `Harperian' paradox: Leaving descendants in a crowded plant world
探索“哈珀”悖论:将后代留在拥挤的植物世界中
- 批准号:
RGPIN-2019-04688 - 财政年份:2022
- 资助金额:
$ 32.57万 - 项目类别:
Discovery Grants Program - Individual
Study of enzymes inside liquid-liquid phase separated crowded droplets
液-液相分离拥挤液滴内酶的研究
- 批准号:
22K15065 - 财政年份:2022
- 资助金额:
$ 32.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RUI: Anomalous and motor-driven dynamics in crowded biomimetic networks
RUI:拥挤仿生网络中的异常和电机驱动动力学
- 批准号:
2203791 - 财政年份:2022
- 资助金额:
$ 32.57万 - 项目类别:
Continuing Grant
Physical determinants of DNA recognition and genome organization in crowded environments
拥挤环境中 DNA 识别和基因组组织的物理决定因素
- 批准号:
10501107 - 财政年份:2022
- 资助金额:
$ 32.57万 - 项目类别:
Driven, directed or crowded: dynamics of soft matter near and far from equilibrium
驱动、定向或拥挤:软物质接近和远离平衡的动力学
- 批准号:
RGPIN-2019-04970 - 财政年份:2022
- 资助金额:
$ 32.57万 - 项目类别:
Discovery Grants Program - Individual
Measuring and Manipulating how Proteins Control their Net Charge: Redox Enzymes, Crowded Enzymes, and Aggregated Proteins.
测量和操纵蛋白质如何控制其净电荷:氧化还原酶、拥挤酶和聚集蛋白质。
- 批准号:
2203441 - 财政年份:2022
- 资助金额:
$ 32.57万 - 项目类别:
Standard Grant
Silicon-biomolecule interactions in molecularly crowded environments
分子拥挤环境中的硅-生物分子相互作用
- 批准号:
573351-2022 - 财政年份:2022
- 资助金额:
$ 32.57万 - 项目类别:
University Undergraduate Student Research Awards