SHF: Small: Collaborative Research: Towards Automated Model Synthesis of Library and System Functions for Program-Environment Co-Analysis
SHF:小型:协作研究:面向程序-环境协同分析的库和系统功能的自动模型综合
基本信息
- 批准号:1319705
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The rapid advance of program analysis greatly benefits many applications, including security vulnerability detection, software fault localization, performance optimization, to name a few. However, handling library functions and system calls (also referred to as environmental functions) presents a pervasive and critical challenge in program analysis. Even though these environmental functions are not written by developers, they are an intrinsic part of program semantics and consequently it would be ideal for a program analysis to co-analyze the program and its execution environment. Despite its importance, achieving program-environment co-analysis in practice is challenging. First, the difficulty to acquire the source code of some environmental functions precludes source code based analysis. Moreover, even if source code is available, the code base is often prohibitively large and complex, making analysis difficult.In this project, the goal is to develop a highly automated technique that can construct models for environmental functions from their binary implementations and a set of initial inputs. The models are essentially programs that provide the same functionality of the functions being modeled, yet substantially simplified. Such programs can be included as part of the application, enabling program-environment co-analysis. The proposed technique will lead to a highly automated solution that will largely offload the onus of manually crafting models from program analysis developers' shoulders. Moreover, it will make program environment co-analysis feasible and more precise, enabling detection of security vulnerability and software defects that are otherwise undetectable. Additionally, the PIs expect the proposed research to foster learnings in both program analysis and operating systems, as well as providing many opportunities to incorporate findings to relevant courses in computer science.
程序分析的快速进步极大地使许多应用程序受益,包括安全漏洞检测,软件故障本地化,性能优化等等。但是,处理库功能和系统调用(也称为环境功能)在程序分析中提出了普遍且至关重要的挑战。即使这些环境功能不是由开发人员撰写的,它们是程序语义的内在组成部分,因此,对于程序分析,可以共同分析程序及其执行环境是理想的选择。尽管它很重要,但在实践中实现计划环境共同分析是具有挑战性的。首先,获取某些环境功能的源代码的困难排除了基于源代码的分析。此外,即使有源代码可用,代码库通常通常是大而复杂的,使分析变得困难。在此项目中,目标是开发一种高度自动化的技术,该技术可以从其二进制实现和一组初始输入中为环境功能构建模型。这些模型本质上是提供与正在建模的功能相同功能的程序,但基本简化了。这些程序可以作为申请的一部分包括在内,从而实现了环境的共同分析。所提出的技术将导致高度自动化的解决方案,从而在很大程度上将手动制定模型的责任从程序分析开发人员的肩膀上卸下。此外,它将使程序环境共同分析可行,更精确,从而可以检测到否则无法检测到的安全漏洞和软件缺陷。此外,PIS期望拟议的研究能够在程序分析和操作系统中培养学习,并提供许多机会,将发现结果纳入计算机科学的相关课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng Qin其他文献
Low-Cost Active Anomaly Detection with Switching Latency
具有切换延迟的低成本主动异常检测
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Feng Qin;Hui Feng;Tao Yang;Bo Hu - 通讯作者:
Bo Hu
Relative pollen productivity estimates for alpine meadow vegetation, northeastern Tibetan Plateau
青藏高原东北部高寒草甸植被相对花粉生产力估算
- DOI:
10.1007/s00334-019-00751-4 - 发表时间:
2019-10 - 期刊:
- 影响因子:2.5
- 作者:
Feng Qin;M. Jane Bunting;Yan Zhao;Quan Li;Qiaoyu Cui;Weihe Ren - 通讯作者:
Weihe Ren
A synergetic grain growth mechanism uniting nanograin rotation and grain boundary migration in nanocrystalline materials
纳米晶材料中纳米晶旋转和晶界迁移相结合的协同晶粒生长机制
- DOI:
10.1016/j.rinp.2019.102381 - 发表时间:
2019-09 - 期刊:
- 影响因子:5.3
- 作者:
Jianjun Li;Feng Qin;Wenjun Lu;G. J. Weng - 通讯作者:
G. J. Weng
An ultraperformance liquid chromatography-tandem mass spectrometry method for determination of anastrozole in human plasma and its application to a pharmacokinetic study.
超高效液相色谱-串联质谱法测定人血浆中阿那曲唑的含量及其在药代动力学研究中的应用。
- DOI:
10.1002/bmc.1476 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jia Yu;Jifen He;Yi Zhang;Feng Qin;Z. Xiong;Fa - 通讯作者:
Fa
Hill Coefficients of a Polymodal Monod-Wyman-Changeux Model for Ion Channel Gating
- DOI:
10.1016/j.bpj.2010.05.018 - 发表时间:
2010-08-04 - 期刊:
- 影响因子:3.4
- 作者:
Feng Qin - 通讯作者:
Feng Qin
Feng Qin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feng Qin', 18)}}的其他基金
SHF: CSR: Small: Collaborative Research: Automated Model Synthesis of Library and System Functions for Program-Environment Co-Analysis
SHF:CSR:小型:协作研究:用于程序-环境协同分析的库和系统功能的自动模型合成
- 批准号:
1218358 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Building Immunity to Memory Management Bugs during Production Runs
职业:在生产运行期间建立对内存管理错误的免疫力
- 批准号:
0953759 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
- 批准号:61661005
- 批准年份:2016
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
- 批准号:61301143
- 批准年份:2013
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
- 批准号:81072465
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
基于小世界网络的传感器网络研究
- 批准号:60472059
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2334624 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant