CAREER: Analyzing and Exploiting Meta-information for Keyword Search on Semi-structured Data
职业:分析和利用元信息进行半结构化数据的关键字搜索
基本信息
- 批准号:1322406
- 负责人:
- 金额:$ 28.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-12-25 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research project is to provide high-quality keyword search results on semi-structured data in XML format. To address the challenge of handling inherent ambiguity in keyword search, fundamental techniques and an effective search engine are developed that exploit the meta-information in the data in order to infer user search intention and to achieve high search quality. The project includes novel research on the following key areas: (1) Query Result Generation: identifying relevant nodes in XML data and composing atomic and intact query results, each of which represents an object of the inferred user search goal; (2) Query Result Presentation: developing techniques for result ranking, snippet generation, and result clustering, in order to help users quickly find the most relevant results; (3) Advanced Queries and Data Models: supporting expressive search options and handling XML data with rich constraints; and (4) Efficiency: developing techniques for performance optimization, including indexes, materialized views, and top-k query processing. Furthermore, an axiomatic evaluation framework is initiated for formally reasoning about XML keyword search strategies.The success of the project will advance the state-of-the-art of keyword search on XML data, enhance the research and education infrastructure in this area, and have broader impacts on both general public as well as scientific communities for information discovery. This research is intergrated with education through curriculum enhancement, student advising, workshops as well as outreach programs. Publications, software and course materials that are resulted from this project will be disseminated via the project website (http://web.njit.edu/~ychen/xseek.htm).
这个研究项目的目标是在XML格式的半结构化数据上提供高质量的关键字搜索结果。为了解决关键字搜索中固有歧义的处理挑战,开发了利用数据中的元信息来推断用户搜索意图并实现高搜索质量的基本技术和有效的搜索引擎。该项目包括以下关键领域的新研究:(1)查询结果生成:识别XML数据中的相关节点,组成原子和完整的查询结果,每个查询结果代表推断出的用户搜索目标的一个对象;(2)查询结果呈现:开发结果排序、代码片段生成和结果聚类技术,帮助用户快速找到最相关的结果;(3)高级查询和数据模型:支持富有表现力的搜索选项和处理具有丰富约束的XML数据;(4)效率:开发性能优化技术,包括索引、物化视图和top-k查询处理。此外,还提出了一个公理化评估框架,用于对XML关键字搜索策略进行形式化推理。该项目的成功将推动XML数据关键字搜索技术的发展,增强这一领域的研究和教育基础设施,并对公众和科学界的信息发现产生更广泛的影响。这项研究通过课程改进、学生咨询、研讨会以及外展计划与教育相结合。本项目产生的出版物、软件和课程材料将通过项目网站(http://web.njit.edu/~ychen/xseek.htm)发布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Chen其他文献
Volatile Compounds in Anal Gland of Siberian Weasels (Mustela sibirica) and Steppe Polecats (M. eversmanni)
西伯利亚黄鼠狼 (Mustela sibirica) 和草原臭猫 (M. eversmanni) 肛门腺中的挥发性化合物
- DOI:
10.1023/a:1016246120479 - 发表时间:
2002 - 期刊:
- 影响因子:2.3
- 作者:
Jian;Lixing Sun;Zhi;Zuyan Wang;Yi Chen;Rui Wang - 通讯作者:
Rui Wang
Alpha fetoprotein activates AKT/mTOR signal to stimulate expression of CXCR4 and migration of hepatoma cells
甲胎蛋白激活AKT/mTOR信号刺激CXCR4表达和肝癌细胞迁移
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yi Chen;Xieju Xie;Shigan Fu;Mengsen Li - 通讯作者:
Mengsen Li
Assessment for learning : enhancing activities to learn Mandarin
学习评估:加强学习普通话的活动
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yi Chen - 通讯作者:
Yi Chen
Effective Network Analysis of Schizophrenia based on EEG Source Signals
基于脑电图源信号的精神分裂症有效网络分析
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Liqing Geng;Yi Chen;Ziyu Hu;Chunxiao Han - 通讯作者:
Chunxiao Han
Challenges and solutions of next-generation imager: CMOS single photon avalanche diode image sensor
下一代成像器的挑战与解决方案:CMOS单光子雪崩二极管图像传感器
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Tianqi Zhao;Shangzhong Jin;Aiming Feng;Chun;Yan Shi;Rui Xu;Yi Chen;Yadong Zhou - 通讯作者:
Yadong Zhou
Yi Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Chen', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
- 批准号:
2237328 - 财政年份:2023
- 资助金额:
$ 28.9万 - 项目类别:
Standard Grant
SBIR Phase I: Ultrahigh Throughput Black Solar Wafer NanoManufacturing for Photovoltaic Energy Application
SBIR 第一阶段:用于光伏能源应用的超高通量黑色太阳能晶圆纳米制造
- 批准号:
1248974 - 财政年份:2013
- 资助金额:
$ 28.9万 - 项目类别:
Standard Grant
III-Core-Small: Collaborative Research: Mining and Optimizing Ad Hoc Workflows
III-Core-Small:协作研究:挖掘和优化临时工作流程
- 批准号:
1322407 - 财政年份:2012
- 资助金额:
$ 28.9万 - 项目类别:
Standard Grant
CAREER: Analyzing and Exploiting Meta-information for Keyword Search on Semi-structured Data
职业:分析和利用元信息进行半结构化数据的关键字搜索
- 批准号:
0845647 - 财政年份:2009
- 资助金额:
$ 28.9万 - 项目类别:
Continuing Grant
III-Core-Small: Collaborative Research: Mining and Optimizing Ad Hoc Workflows
III-Core-Small:协作研究:挖掘和优化临时工作流程
- 批准号:
0915438 - 财政年份:2009
- 资助金额:
$ 28.9万 - 项目类别:
Standard Grant
SGER: Enabling Effective Access to Scientific Workflows
SGER:实现科学工作流程的有效访问
- 批准号:
0740129 - 财政年份:2007
- 资助金额:
$ 28.9万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Algorithms for Analyzing Faulty Data Using Domain Information
EAGER:使用域信息分析错误数据的算法
- 批准号:
2414736 - 财政年份:2024
- 资助金额:
$ 28.9万 - 项目类别:
Standard Grant
IUSE: Conservation Principles, Illustrated: Analyzing the Impact of Informal Visual Learning Tools on Educational Engineering Through Comics
IUSE:保护原则,图解:通过漫画分析非正式视觉学习工具对教育工程的影响
- 批准号:
2235827 - 财政年份:2024
- 资助金额:
$ 28.9万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327892 - 财政年份:2024
- 资助金额:
$ 28.9万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327893 - 财政年份:2024
- 资助金额:
$ 28.9万 - 项目类别:
Standard Grant
CAREER: Scalable Software Infrastructure for Analyzing Complex Networks
职业:用于分析复杂网络的可扩展软件基础设施
- 批准号:
2339607 - 财政年份:2024
- 资助金额:
$ 28.9万 - 项目类别:
Continuing Grant
CRII: SHF: An Automated and User-centered Framework for Reproducing System-level Concurrency Bugs by Analyzing Bug Reports
CRII:SHF:通过分析错误报告来重现系统级并发错误的自动化且以用户为中心的框架
- 批准号:
2348277 - 财政年份:2024
- 资助金额:
$ 28.9万 - 项目类别:
Standard Grant
Analyzing and Categorizing Manga and Children's Books for Extensive Reading in German
对德语漫画和儿童读物进行分析和分类以供泛读
- 批准号:
24K04027 - 财政年份:2024
- 资助金额:
$ 28.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SaTC: CORE: Medium: Hardware Security Insights: Analyzing Hardware Designs to Understand and Assess Security Weaknesses and Vulnerabilities
协作研究:SaTC:核心:中:硬件安全见解:分析硬件设计以了解和评估安全弱点和漏洞
- 批准号:
2247755 - 财政年份:2023
- 资助金额:
$ 28.9万 - 项目类别:
Continuing Grant
Analyzing the mechanism of the effects of Fusobacterium cooperated with cancer-associated fibroblasts on gastrointestinal cancers
梭杆菌协同癌相关成纤维细胞对胃肠道肿瘤的作用机制分析
- 批准号:
23K15435 - 财政年份:2023
- 资助金额:
$ 28.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Differentiating the biological effects of vaping from smoking by analyzing the methylome and transcriptome
通过分析甲基化组和转录组区分电子烟和吸烟的生物学效应
- 批准号:
10588059 - 财政年份:2023
- 资助金额:
$ 28.9万 - 项目类别: