EAGER: Algorithms for Analyzing Faulty Data Using Domain Information

EAGER:使用域信息分析错误数据的算法

基本信息

  • 批准号:
    2414736
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

The focus of this project is the building of a mathematical theory for analyzing large data that contains errors by taking advantage of domain knowledge regarding the processes that have created the data, as well as the error model. The project contains three thrusts, listed from the most well-defined to the most exploratory. The first thrust involves analyzing genomic data in order to investigate tumor evolution trees that lead to the development of cancer. The second involves analyzing faulty data generated by computer networks while utilizing information about the network such as its topology and delay pattern. The third is exploring other areas for which the techniques developed for the first two thrusts apply, making progress towards the goal of developing general techniques for analyzing faulty data in the absence of a known ground truth using domain information.In the model that this project assumes, the input contains errors that have been probabilistically generated according to a known distribution in unknown locations. The goal that the investigator would like to explore is the creation of sampling techniques that do not blindly take random samples from the prohibitively large space for the ground truth; rather, it is to use the knowledge about restrictions that limit the possible space that could have led to the noisy input and analyze this much smaller space. In particular, the first focus of this project is to explore how such information can be used to generate efficient sampling techniques in order to infer properties of tumor progression trees, and, later on, more general phylogenetic trees. Later parts of this project involve applying this knowledge to routing graphs and other data with underlying well-structured graphs. Since such techniques rely on graph-theoretic assumptions underlying the inputs, the goal for all three thrusts is to develop widely applicable probabilistic techniques that will help one analyze noisy graph information in general, pushing existing theoretical knowledge forward, as well as bringing a better understanding to applied areas with strong theoretical underpinnings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目的重点是利用关于创建数据的过程以及错误模型的领域知识,构建用于分析包含错误的大数据的数学理论。 该项目包含三个重点,从最明确的到最具探索性的。 第一个推力涉及分析基因组数据,以研究导致癌症发展的肿瘤进化树。 第二种是分析计算机网络产生的错误数据,同时利用网络的拓扑结构和延迟模式等信息。 第三个目标是探索前两个目标所开发的技术所适用的其他领域,朝着开发通用技术的目标取得进展,以便在缺乏已知基础事实的情况下使用领域信息分析错误数据。在本项目假设的模型中,输入包含根据未知位置的已知分布概率生成的错误。 研究人员想要探索的目标是创建采样技术,该技术不会盲目地从过大的空间中随机抽取样本以获得地面真实;相反,它是使用有关限制可能导致噪声输入的可能空间的限制的知识,并分析这个小得多的空间。 特别是,该项目的第一个重点是探索如何使用这些信息来生成有效的采样技术,以推断肿瘤进展树的属性,以及更一般的系统发育树。 这个项目的后面部分涉及将这些知识应用于路由图和其他具有底层结构良好的图的数据。 由于这些技术依赖于输入的图论假设,所有三个目标的目标是开发广泛适用的概率技术,帮助人们分析一般的噪声图信息,推动现有的理论知识向前发展,该奖项反映了NSF的法定使命,并被认为是值得支持的,使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Funda Ergun其他文献

Network design for tolerating multiple link failures using Fast Re-route (FRR)
使用快速重新路由 (FRR) 来容忍多个链路故障的网络设计

Funda Ergun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Funda Ergun', 18)}}的其他基金

IPA increment.
IPA增量。
  • 批准号:
    1940000
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Intergovernmental Personnel Award

相似海外基金

REU Site: Collaborative Research: Developing, Analyzing, and Evaluating Self-drive Algorithms Using Real Street Legal Electric Vehicles on Campus
REU 网站:合作研究:在校园内使用真实街道合法电动汽车来开发、分析和评估自动驾驶算法
  • 批准号:
    2150096
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
REU Site: Collaborative Research: Developing, Analyzing, and Evaluating Self-drive Algorithms Using Real Street Legal Electric Vehicles on Campus
REU 网站:合作研究:在校园内使用真实街道合法电动汽车来开发、分析和评估自动驾驶算法
  • 批准号:
    2150292
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Algorithms for Summarizing, Representing, and Analyzing Trajectories of Moving Objects
总结、表示和分析运动物体轨迹的算法
  • 批准号:
    RGPIN-2020-05351
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Analyzing Geometric Partitioning Algorithms for Tabular Data Visualization
分析表格数据可视化的几何分区算法
  • 批准号:
    575482-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Algorithms for Summarizing, Representing, and Analyzing Trajectories of Moving Objects
总结、表示和分析运动物体轨迹的算法
  • 批准号:
    RGPAS-2020-00079
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Algorithms for Summarizing, Representing, and Analyzing Trajectories of Moving Objects
总结、表示和分析运动物体轨迹的算法
  • 批准号:
    RGPAS-2020-00079
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
New algorithms and software for analyzing and classifying evolutionary and biomedical data
用于分析和分类进化和生物医学数据的新算法和软件
  • 批准号:
    RGPIN-2016-06557
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for Summarizing, Representing, and Analyzing Trajectories of Moving Objects
总结、表示和分析运动物体轨迹的算法
  • 批准号:
    RGPIN-2020-05351
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for Summarizing, Representing, and Analyzing Trajectories of Moving Objects
总结、表示和分析运动物体轨迹的算法
  • 批准号:
    RGPIN-2020-05351
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for Summarizing, Representing, and Analyzing Trajectories of Moving Objects
总结、表示和分析运动物体轨迹的算法
  • 批准号:
    RGPAS-2020-00079
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了