Topics in the geometry of Banach spaces
Banach 空间几何主题
基本信息
- 批准号:1332255
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project specifically addresses problems in the geometry of Banach spaces with a focus on the analysis of coordinate systems such as bases and frames. Coordinate systems are widely used in both application and theory, strongly connecting these problems to other areas of mathematics such as approximation theory, descriptive set theory, and differential topology. For example, new Banach spaces are often constructed by explicitly building a basis for the space. In this spirit, this project will address the construction of new Banach spaces with the property that every bounded operator on the space is a multiple of the identity plus a compact operator. Moreover, the project will also study the greedy approximation properties of coordinate systems in Banach spaces. Greedy approximation is based on the idea of always taking the "biggest piece" in each step of an iterative algorithm. This project will consider the existence of greedy bases and the convergence of greedy algorithms in particular Banach spaces. Beyond greedy approximation, this project intends to extend the descriptive set theory approach to bases, which has given remarkable insight into the structural theory of Banach spaces, to that of frames. Furthermore, this project will work on adapting the techniques and structure of Hilbert and Banach frames to the continuously varying setting of vector bundles.The structural attributes of Banach spaces and Hilbert spaces make them ideal settings for analyzing many problems in mathematics and engineering. A common example is encoding and transmitting signals. Bases in a Hilbert space or Banach space give a unique representation for the vectors in the space while the representation given by a frame is redundant. Signal encoding and transmission is often accomplished by sending coefficients with respect to some basis. This strategy, however, is not robust in the face of error, as any loss or corruption of basis coefficients results in the loss of entire dimensions of the signal. This is where frames come in as their redundancy distributes error loss over the whole space instead of concentrating it in isolated dimensions. Frames now play an important role in signal processing, and the study of their geometry in both Hilbert and Banach spaces is a growing area of research. Additionally, sometimes it is important to consider not just a single vector space, but some related collection of spaces. For example, the tangent bundle of a surface is the collection of tangent planes to the surface. In this case we want a basis for the tangent space at each point which moves smoothly over the surface. It is impossible to find such a basis for many surfaces. On the contrary, it is always possible to find a redundantframe for the tangent space which moves smoothly. Given this, it is naturally of interest to study such frames.
该项目专门解决了巴拿赫空间的几何问题,重点是对坐标系统(如基座和框架)的分析。坐标系统在应用和理论上都有广泛的应用,它将这些问题与其他数学领域紧密地联系在一起,比如近似理论、描述集理论和微分拓扑。例如,新的巴拿赫空间通常是通过显式地为空间构建基来构造的。在这种精神下,本项目将讨论新巴拿赫空间的构造,其性质是空间上的每一个有界算子都是单位算子加紧算子的倍数。此外,本课题还将研究Banach空间中坐标系的贪心逼近性质。贪婪近似是基于在迭代算法的每一步中总是取“最大块”的思想。本课题将考虑贪心基的存在性和贪心算法在特定的Banach空间中的收敛性。除了贪心逼近之外,本项目打算将描述集理论的方法扩展到基,这给了Banach空间的结构理论以深刻的见解,到框架的结构理论。此外,本项目将致力于将Hilbert和Banach框架的技术和结构适应于向量束的连续变化设置。巴拿赫空间和希尔伯特空间的结构属性使它们成为分析许多数学和工程问题的理想场所。一个常见的例子是编码和传输信号。希尔伯特空间或巴拿赫空间中的基给出了空间中向量的唯一表示,而坐标系给出的表示是冗余的。信号的编码和传输通常是通过发送相对于某些基的系数来完成的。然而,这种策略在面对误差时并不健壮,因为基系数的任何损失或损坏都会导致信号的整个维数的损失。这就是帧出现的地方,因为它们的冗余将错误损失分配到整个空间,而不是将其集中在孤立的维度上。帧现在在信号处理中扮演着重要的角色,在希尔伯特和巴拿赫空间中研究它们的几何是一个日益增长的研究领域。此外,有时不仅要考虑单个向量空间,还要考虑一些相关的空间集合,这一点很重要。例如,曲面的切线束是该曲面的切线平面的集合。在这种情况下,我们想要在每个点上的切空间的一组基,它在表面上平滑地移动。对于许多曲面都不可能找到这样的基。相反,总是有可能找到一个平滑移动的切空间的冗余帧。鉴于此,研究这样的框架自然会引起人们的兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Freeman其他文献
Barkour: Benchmarking Animal-level Agility with Quadruped Robots
Barkour:用四足机器人对动物级敏捷性进行基准测试
- DOI:
10.48550/arxiv.2305.14654 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ken Caluwaerts;Atil Iscen;J. Kew;Wenhao Yu;Tingnan Zhang;Daniel Freeman;Kuang;Lisa Lee;Stefano Saliceti;Vincent Zhuang;Nathan Batchelor;Steven Bohez;Federico Casarini;José Enrique Chen;O. Cortes;Erwin Coumans;Adil Dostmohamed;Gabriel Dulac;Alejandro Escontrela;Erik Frey;Roland Hafner;Deepali Jain;Bauyrjan Jyenis;Yuheng Kuang;Edward Lee;Linda Luu;Ofir Nachum;Kenneth Oslund;Jason Powell;D. Reyes;Francesco Romano;Feresteh Sadeghi;R. Sloat;B. Tabanpour;Daniel Zheng;Michael Neunert;R. Hadsell;N. Heess;F. Nori;J. Seto;Carolina Parada;Vikas Sindhwani;Vincent Vanhoucke;Jie Tan - 通讯作者:
Jie Tan
Annual Research Review: Immersive virtual reality and digital applied gaming interventions for the treatment of mental health problems in children and young people: the need for rigorous treatment development and clinical evaluation
年度研究回顾:沉浸式虚拟现实和数字应用游戏干预治疗儿童和青少年心理健康问题:需要严格的治疗开发和临床评估
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Brynjar Halldorsson;Claire Hill;Polly Waite;Kate Partridge;Daniel Freeman;C. Creswell - 通讯作者:
C. Creswell
S0033291719003155jra 1..10
S0033291719003155jra 1..10
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Daniel Freeman;B. S. Loe;D. Kingdon;Helen Startup;Andrew Molodynski;Laina Rosebrock;Poppy Brown;Bryony Sheaves;Felicity Waite;Jessica C. Bird - 通讯作者:
Jessica C. Bird
Correction: Testing the combination of Feeling Safe and peer counselling against formulation-based cognitive behaviour therapy to promote psychological wellbeing in people with persecutory delusions: study protocol for a randomized controlled trial (the Feeling Safe-NL Trial)
- DOI:
10.1186/s13063-023-07750-x - 发表时间:
2023-12-18 - 期刊:
- 影响因子:2.000
- 作者:
Eva Tolmeijer;Felicity Waite;Louise Isham;Laura Bringmann;Robin Timmers;Arjan van den Berg;Hanneke Schuurmans;Anton B. P. Staring;Paul de Bont;Rob van Grunsven;Gert Stulp;Ben Wijnen;Mark van der Gaag;Daniel Freeman;David van den Berg - 通讯作者:
David van den Berg
A validation study to trigger nicotine craving in virtual reality
在虚拟现实中触发尼古丁渴望的验证研究
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Chun;Aitor Rovira;Xueni Pan;Daniel Freeman - 通讯作者:
Daniel Freeman
Daniel Freeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Freeman', 18)}}的其他基金
Immersive Virtual Reality Cognitive Treatment (VRCT) for persecutory delusions.
针对被害妄想的沉浸式虚拟现实认知治疗(VRCT)。
- 批准号:
MR/P02629X/1 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Research Grant
Understanding and treating persecutory delusions: an interventionist-causal model approach
理解和治疗被害妄想:干预因果模型方法
- 批准号:
G0902308/2 - 财政年份:2011
- 资助金额:
$ 1.24万 - 项目类别:
Fellowship
Topics in the geometry of Banach spaces
Banach 空间几何主题
- 批准号:
1139143 - 财政年份:2010
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Topics in the geometry of Banach spaces
Banach 空间几何主题
- 批准号:
1001929 - 财政年份:2010
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Understanding and treating persecutory delusions: an interventionist-causal model approach
理解和治疗被害妄想:干预因果模型方法
- 批准号:
G0902308/1 - 财政年份:2010
- 资助金额:
$ 1.24万 - 项目类别:
Fellowship
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Geometry of Graphs and Banach Spaces
图几何和 Banach 空间
- 批准号:
2055604 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Algebra and geometry of Banach algebras and function spaces-topological approach
Banach代数和函数空间的代数和几何-拓扑方法
- 批准号:
20K03577 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of Banach Spaces and Metric Spaces
Banach 空间和度量空间的几何
- 批准号:
1900612 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Continuing Grant
Geometry of Banach spaces and their spaces of operators
Banach空间的几何及其算子空间
- 批准号:
1912897 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Geometry of hyperbolic groups and of their actions on Banach spaces
双曲群的几何及其在巴纳赫空间上的作用
- 批准号:
2099922 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Studentship
Geometry of Banach spaces and their spaces of operators
Banach空间的几何及其算子空间
- 批准号:
1600600 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Geometry of sumsets in Banach spaces
Banach 空间中求和集的几何
- 批准号:
483002-2015 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
University Undergraduate Student Research Awards
Research on geometric structures of Banach and function spaces with direct sums
Banach几何结构与直和函数空间的研究
- 批准号:
26400131 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear Geometry of Banach Spaces and Metric Spaces
Banach空间和度量空间的非线性几何
- 批准号:
1301591 - 财政年份:2013
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant














{{item.name}}会员




