Measuring Anisotropy in Fibrous Soft Materials by MR Imaging of Slow and Fast Shear Waves

通过慢剪切波和快剪切波的 MR 成像测量纤维软材料的各向异性

基本信息

  • 批准号:
    1332433
  • 负责人:
  • 金额:
    $ 42.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

The objectives of this research are to measure the direction-dependent, mechanical properties of fibrous soft materials, such as artificial tissue, muscle or white matter in the brain. The proposed approach is to use magnetic resonance imaging to visualize and measure the propagation of elastic waves in the material. The speed of wave propagation through a solid material depends on its stiffness, and in a fibrous material the stiffness depends on the direction of loading. By using magnetic resonance imaging to visualize shear waves, it is possible to estimate these mechanical properties without invasive procedures or destructive testing. This approach will be validated by applying it to measure mechanical properties of fibrin gels in which fiber alignment is produced by polymerizing the gel in a magnetic field. It will then be used to non-invasively characterize mechanical properties of the brain.If successful, the benefits of the research will include an improved ability to model and simulate the behavior of fibrous materials. It will enable accurate computer simulations of the mechanisms of traumatic brain injury and improved understanding of injury mechanics. Since white matter in the brain is particularly sensitive to mechanical deformation, the ability to model it correctly is extremely important to the design of protective devices and the development of therapeutic approaches. In addition, the proposed research may lead to new methods to monitor the condition of muscle, tendon, brain, or artificial tissue. The engineered gels used in this project may also have medical applications as tissue surrogates or scaffolds for nerve growth. A broad benefit of the project is that high school and undergraduate engineering students will learn to apply state-of-the-art imaging methods to understand complex mechanical behavior of an important class of materials.
这项研究的目的是测量纤维性软材料的方向依赖性机械性能,如人工组织、肌肉或大脑中的白质。提出的方法是使用磁共振成像可视化和测量弹性波在材料中的传播。波在固体材料中的传播速度取决于它的刚度,而在纤维材料中,刚度取决于加载的方向。通过使用磁共振成像可视化剪切波,可以在没有侵入性程序或破坏性测试的情况下估计这些机械性能。这种方法将通过应用它来测量纤维蛋白凝胶的机械性能来验证,其中纤维排列是通过在磁场中聚合凝胶产生的。然后,它将被用于非侵入性地表征大脑的机械特性。如果成功,这项研究的好处将包括提高对纤维材料行为的建模和模拟能力。它将使计算机能够精确模拟创伤性脑损伤的机制,并提高对损伤力学的理解。由于大脑中的白质对机械变形特别敏感,因此正确建模的能力对保护装置的设计和治疗方法的发展至关重要。此外,拟议的研究可能会导致新的方法来监测肌肉、肌腱、大脑或人工组织的状况。在这个项目中使用的工程凝胶也可以作为神经生长的组织替代品或支架在医学上应用。该项目的一个广泛的好处是,高中和本科工程专业的学生将学习应用最先进的成像方法来理解一类重要材料的复杂力学行为。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Frequency-dependent shear properties of annulus fibrosus and nucleus pulposus by magnetic resonance elastography
  • DOI:
    10.1002/nbm.3918
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Beauchemin, P. F.;Bayly, P. V.;Perie, D.
  • 通讯作者:
    Perie, D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Bayly其他文献

Effects of Inter-Doublet Coupling on Flagellar Beating
  • DOI:
    10.1016/j.bpj.2019.11.1605
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Louis Woodhams;Yenan Shen;Philip Bayly
  • 通讯作者:
    Philip Bayly

Philip Bayly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Bayly', 18)}}的其他基金

Characterization of Soft Fibrous Materials by MRI of Ultrasound-Induced Shear Waves
超声诱导剪切波 MRI 表征软纤维材料
  • 批准号:
    1727412
  • 财政年份:
    2017
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
Characterizing Dynamic Transitions and Bifurcations to Understand How Flagella Beat
表征动态转变和分叉以了解鞭毛如何跳动
  • 批准号:
    1633971
  • 财政年份:
    2016
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
Probing the Mechanics of the Axoneme in Genetically-Modified Flagella
转基因鞭毛轴丝力学的探讨
  • 批准号:
    1265447
  • 财政年份:
    2013
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
GOALI/IUCP: Dynamic Analysis of High-Performance Drilling and Reaming Systems for Aerospace Manufactuirng
GOALI/IUCP:航空航天制造高性能钻孔和铰孔系统的动态分析
  • 批准号:
    9900108
  • 财政年份:
    1999
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
CAREER: Prediction and Control of Nonlinear Oscillations: Application to Mechanical and Cardiac Dynamics
职业:非线性振荡的预测和控制:在机械和心脏动力学中的应用
  • 批准号:
    9625161
  • 财政年份:
    1996
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant

相似海外基金

Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
  • 批准号:
    2344156
  • 财政年份:
    2024
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
  • 批准号:
    2340918
  • 财政年份:
    2024
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
Seismic Tomography Models for Alaska: Validation, Iteration, and Complex Anisotropy
阿拉斯加地震层析成像模型:验证、迭代和复杂各向异性
  • 批准号:
    2342129
  • 财政年份:
    2024
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
CEDAR: Evaluating Ion Temperature Anisotropy in the Weakly Collisional F-region Ionosphere
CEDAR:评估弱碰撞 F 区电离层中的离子温度各向异性
  • 批准号:
    2330254
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
A novel fluorescence anisotropy imaging for imaging nano-scale LLPS in living cells
一种用于活细胞中纳米级 LLPS 成像的新型荧光各向异性成像
  • 批准号:
    23K17398
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Lower mantle seismic anisotropy and heterogeneities - insight from the thermoelastic properties of CaSiO3 perovskite
下地幔地震各向异性和异质性——从 CaSiO3 钙钛矿热弹性性质的洞察
  • 批准号:
    2240506
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
Origin of intracellular anisotropy investigated by FCS utilizing spatial information
利用空间信息的 FCS 研究细胞内各向异性的起源
  • 批准号:
    23K05776
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Synchrotron deformation experiments of olivine under the deep upper mantle conditions: Transient creep, plastic anisotropy, and the role of grain-boundary sliding.
上地幔深部条件下橄榄石的同步加速变形实验:瞬态蠕变、塑性各向异性和晶界滑动的作用。
  • 批准号:
    2322719
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
Advanced Research into Crystallographic Anisotropy & Nucleation Effects in single crystals (ARCANE)
晶体各向异性的高级研究
  • 批准号:
    EP/X025454/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Research Grant
Global optimization of anisotropy in antiferromagnets
反铁磁体各向异性的全局优化
  • 批准号:
    2740295
  • 财政年份:
    2022
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了