Non-Linear Homogenization of Porous Anisotropic Materials: Applications to Plastic and Magnetic Shape-Memory Alloys
多孔各向异性材料的非线性均质化:在塑料和磁性形状记忆合金中的应用
基本信息
- 批准号:1332965
- 负责人:
- 金额:$ 34.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this award is to investigate the effect of porosity and to develop constitutive models accounting for this effect in two different types of kinematically constrained material systems. Examples of the first type include low-symmetry metals, such as magnesium and zirconium alloys, which are nominally incompressible polycrystalline aggregates, but which can undergo significant volumetric strains when porosity is present. Examples of the second type include magnetic shape-memory alloys, such as nickel-manganese-gallium systems, which have been found to exhibit "giant" field-induced strains in costly single crystals, but only minimal magnetostriction in cheaper polycrystals. In this case, the presence of porosity can help relax the internal kinematic constraints in the polycrystal due to the strong orientational character of the magnetostriction in the grains that tend to block each other?s strains. The main challenge is to properly account for the dilatational and relaxational effects of the porosity in constitutive models for the response of these materials under general loading conditions. This will be accomplished by means of a recently developed "iterated" nonlinear homogenization technique, which makes use of suitably chosen "linear comparison" media to generate highly accurate and efficient estimates for the coupled, nonlinear response of porous single-crystal and polycrystalline samples of these materials.If successful, the benefits of this research will include improved understanding and advanced modeling of the mechanical properties of high-performance metal alloys for energy-efficient applications in the automotive, aerospace and nuclear industries, as well as of the magneto-elastic response of magnetic shape-memory alloys for applications such as actuators, sensors and energy-harvesting devices. The research is also expected to lead to improved characterization of net-shape metal-forming operations, as well as of ductile failure in polycrystalline materials via void growth and coalescence. In addition, the results will be of interest for modeling of geomaterials, such as ice, halite and olivine. The work may also be relevant for the development of other active material systems, such as certain types of polycrystalline ferroelectrics.
该奖项的研究目标是研究孔隙率的影响,并在两种不同类型的运动约束材料系统中开发考虑这种影响的本构模型。第一种类型的例子包括低对称性金属,如镁和锆合金,它们名义上是不可压缩的多晶聚集体,但当孔隙存在时,它们可以经历显着的体积应变。第二种类型的例子包括磁性形状记忆合金,如镍-锰-镓系统,已经发现在昂贵的单晶中表现出“巨大”的场致应变,但在便宜的多晶中只有最小的磁致伸缩。在这种情况下,孔隙的存在可以帮助放松多晶体内部的运动学约束,因为晶粒中的磁致伸缩具有很强的取向特征,往往会相互阻挡。s菌株。主要的挑战是适当地考虑这些材料在一般加载条件下响应的本构模型中的孔隙率的膨胀和松弛效应。这将通过最近开发的“迭代”非线性均质技术来完成,该技术利用适当选择的“线性比较”介质来对这些材料的多孔单晶和多晶样品的耦合非线性响应产生高度精确和有效的估计。如果成功,这项研究的好处将包括提高对高性能金属合金机械性能的理解和先进建模,用于汽车、航空航天和核工业的节能应用,以及磁性形状记忆合金的磁弹性响应,用于执行器、传感器和能量收集设备。该研究还有望改善网状金属成形操作的表征,以及通过空隙生长和聚结的多晶材料的延性破坏。此外,这些结果将对冰、岩盐和橄榄石等地质材料的建模很有意义。这项工作也可能与其他活性材料系统的发展有关,例如某些类型的多晶铁电体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pedro Ponte Castaneda其他文献
Pedro Ponte Castaneda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pedro Ponte Castaneda', 18)}}的其他基金
Magneto-Active Elastomers: Homogenization, Instabilities and Relaxation
磁活性弹性体:均质化、不稳定性和松弛
- 批准号:
1613926 - 财政年份:2016
- 资助金额:
$ 34.03万 - 项目类别:
Standard Grant
Pattern-Changing Instabilities and Giant Magnetostriction in Periodic Magnetoelastic Composites
周期性磁弹性复合材料中的图案变化不稳定性和巨磁致伸缩
- 批准号:
1068769 - 财政年份:2011
- 资助金额:
$ 34.03万 - 项目类别:
Standard Grant
Non-Convex Homogenization and Applications to (Ferromagnetic) Shape-Memory Polycrystals
非凸均质化及其在(铁磁)形状记忆多晶中的应用
- 批准号:
1108847 - 财政年份:2011
- 资助金额:
$ 34.03万 - 项目类别:
Standard Grant
Fiber-Reinforced Polymeric Material Systems: A Multi-Scale, Elasto-Viscoplastic Homogenization Approach
纤维增强聚合物材料系统:多尺度弹粘塑性均质化方法
- 批准号:
0969570 - 财政年份:2010
- 资助金额:
$ 34.03万 - 项目类别:
Standard Grant
Homogenization-Based Constitutive Models for Magnetorheological Elastomers at Finite Strain
有限应变磁流变弹性体基于均质化的本构模型
- 批准号:
0708271 - 财政年份:2007
- 资助金额:
$ 34.03万 - 项目类别:
Standard Grant
Finite-Strain, Constitutive Models for Semi-Crystalline Polymers
半结晶聚合物的有限应变本构模型
- 批准号:
0654063 - 财政年份:2007
- 资助金额:
$ 34.03万 - 项目类别:
Standard Grant
NATO Advanced Research Workshop on Nonlinear Homogenization and Applications to Composites, Polycrystals and Smart Materials; June 23-26, 2003; Kazimierz Dolny, Poland
北约非线性均质化及其在复合材料、多晶和智能材料中的应用高级研究研讨会;
- 批准号:
0305443 - 财政年份:2003
- 资助金额:
$ 34.03万 - 项目类别:
Standard Grant
US-France Cooperative Research: Field Fluctuations, Microstructure Evolution and Coupled Phenomena in Random Heterogeneous Materials
美法合作研究:随机异质材料中的场涨落、微观结构演化和耦合现象
- 批准号:
0231867 - 财政年份:2003
- 资助金额:
$ 34.03万 - 项目类别:
Standard Grant
Nonlinear Homogenization and Applications to Porous and Nematic Elastomers
非线性均质化及其在多孔和向列弹性体中的应用
- 批准号:
0204617 - 财政年份:2002
- 资助金额:
$ 34.03万 - 项目类别:
Continuing grant
Macroscopic Behavior and Field Fluctuations in Random Heterogeneous Materials: Theory and Applications
随机异质材料的宏观行为和场涨落:理论与应用
- 批准号:
0201454 - 财政年份:2002
- 资助金额:
$ 34.03万 - 项目类别:
Continuing grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Regulation of Linear Ubiquitin Signaling in Innate Immunity
先天免疫中线性泛素信号传导的调节
- 批准号:
MR/X036944/1 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Research Grant
CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
- 批准号:
2336469 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Continuing Grant
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Research Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Continuing Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Continuing Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
- 批准号:
2338704 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Construction of New Additive and Semi-Implicit General Linear Methods
RII Track-4:NSF:新的加法和半隐式一般线性方法的构造
- 批准号:
2327484 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Standard Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
EP/Y030990/1 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Research Grant
Linear Response and Koopman Modes: Prediction and Criticality - LINK
线性响应和库普曼模式:预测和临界性 - LINK
- 批准号:
EP/Y026675/1 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Research Grant
Structural Performance Analysis of a Floating Green Energy Storage Subjected to Non-Linear Loads
非线性载荷下浮动绿色储能结构性能分析
- 批准号:
2902122 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Studentship