Non-Convex Homogenization and Applications to (Ferromagnetic) Shape-Memory Polycrystals
非凸均质化及其在(铁磁)形状记忆多晶中的应用
基本信息
- 批准号:1108847
- 负责人:
- 金额:$ 23.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ponte CastanedaDMS-1108847 The main objective of this proposal is the development of mathematical tools for modeling the shape-memory effect and pseudo-elasticity in shape-memory polycrystals. For this purpose, the investigator makes use of suitable generalizations of the linear comparison homogenization methods for these material systems, incorporating the effects both of crystallographic texture and of morphological texture (as determined by the two-point correlations of the microstructures). The main mathematical challenge arises as a consequence of the lack of convexity (or, more precisely, quasi-convexity) of the relevant energy functions. It is known that this breakdown of convexity leads to the development of additional microstructures at the single crystal level, which lies at the heart of the shape-memory effect. Because of this, linear comparison estimates are also developed for the "relaxation" (or quasi-convexification) of single-crystal shape-memory alloys (SMAs), exploiting a recently uncovered connection between homogenization at the polycrystal level and relaxation at the single-crystal level. The project results in novel and highly efficient multi-scale modeling techniques capable of handling complex microstructures, coupled strongly nonlinear response, microstructure evolution, and the possible development of instabilities. The mathematical techniques developed in this work are of broad application to large classes of polymeric, metallic, biological, and geological material systems, including multi-functional materials, and lend themselves to numerical implementation in constitutive subroutines for use with standard numerical packages. The shape-memory effect is the ability of certain materials to recover, upon heating, apparently permanent deformation sustained below a certain critical temperature. This effect is usually accompanied by pseudo-elasticity whereby single-crystal samples of these materials are observed to undergo fairly large strains (in the order of 10%) at nearly constant stress, which is fully recovered upon unloading. These two properties make shape-memory alloys (SMAs) very attractive as low-frequency, robust actuators and sensing devices for a variety of novel technological applications. However, SMAs are normally used in polycrystalline form, typically as wires, or thin strips and films, where the shape-memory effect is much reduced. For this reason, it is essential to understand and model the relations between the single-crystal behavior, the microstructure, and the macroscopic behavior of the polycrystals. Improvements in the modeling of SMA polycrystals should result in improved performance for these materials, which are being used extensively in industry, as actuators, sensors, couplings, and electrical connectors, as well as in an ever increasing number of medical and robotics applications.
Ponte CastanedaDMS-1108847 该提案的主要目标是开发用于模拟形状记忆多晶体中的形状记忆效应和伪弹性的数学工具。 为此,研究人员利用适当的概括的线性比较均匀化方法,这些材料系统,将晶体结构和形态结构的影响(由两点相关的微观结构)。 主要的数学挑战是由于相关能量函数缺乏凸性(或者更准确地说,准凸性)。 众所周知,这种凸度的破坏导致在单晶水平上形成额外的微结构,这是形状记忆效应的核心。 正因为如此,线性比较估计也开发的“松弛”(或准凸)的单晶形状记忆合金(SMA),利用最近发现的连接均匀化在多晶水平和松弛在单晶水平。 该项目产生了新颖高效的多尺度建模技术,能够处理复杂的微观结构,耦合强非线性响应,微观结构演变以及可能的不稳定性发展。 在这项工作中开发的数学技术广泛应用于大类的聚合物,金属,生物和地质材料系统,包括多功能材料,并借给自己的数值实现本构子程序与标准数值包使用。 形状记忆效应是某些材料在加热时恢复的能力,在一定的临界温度以下维持明显的永久变形。 这种效应通常伴随着伪弹性,由此观察到这些材料的单晶样品在几乎恒定的应力下经历相当大的应变(大约10%),其在卸载时完全恢复。 这两个属性使得形状记忆合金(SMA)非常有吸引力的低频,鲁棒的致动器和传感设备的各种新的技术应用。 然而,SMA通常以多晶形式使用,通常作为线或薄条和膜,其中形状记忆效应大大降低。 因此,有必要了解多晶的单晶行为、微观结构和宏观行为之间的关系并建立模型。 SMA多晶建模的改进应导致这些材料的性能提高,这些材料在工业中广泛使用,如致动器,传感器,耦合器和电连接器,以及越来越多的医疗和机器人应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pedro Ponte Castaneda其他文献
Pedro Ponte Castaneda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pedro Ponte Castaneda', 18)}}的其他基金
Magneto-Active Elastomers: Homogenization, Instabilities and Relaxation
磁活性弹性体:均质化、不稳定性和松弛
- 批准号:
1613926 - 财政年份:2016
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
Non-Linear Homogenization of Porous Anisotropic Materials: Applications to Plastic and Magnetic Shape-Memory Alloys
多孔各向异性材料的非线性均质化:在塑料和磁性形状记忆合金中的应用
- 批准号:
1332965 - 财政年份:2013
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
Pattern-Changing Instabilities and Giant Magnetostriction in Periodic Magnetoelastic Composites
周期性磁弹性复合材料中的图案变化不稳定性和巨磁致伸缩
- 批准号:
1068769 - 财政年份:2011
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
Fiber-Reinforced Polymeric Material Systems: A Multi-Scale, Elasto-Viscoplastic Homogenization Approach
纤维增强聚合物材料系统:多尺度弹粘塑性均质化方法
- 批准号:
0969570 - 财政年份:2010
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
Homogenization-Based Constitutive Models for Magnetorheological Elastomers at Finite Strain
有限应变磁流变弹性体基于均质化的本构模型
- 批准号:
0708271 - 财政年份:2007
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
Finite-Strain, Constitutive Models for Semi-Crystalline Polymers
半结晶聚合物的有限应变本构模型
- 批准号:
0654063 - 财政年份:2007
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
NATO Advanced Research Workshop on Nonlinear Homogenization and Applications to Composites, Polycrystals and Smart Materials; June 23-26, 2003; Kazimierz Dolny, Poland
北约非线性均质化及其在复合材料、多晶和智能材料中的应用高级研究研讨会;
- 批准号:
0305443 - 财政年份:2003
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
US-France Cooperative Research: Field Fluctuations, Microstructure Evolution and Coupled Phenomena in Random Heterogeneous Materials
美法合作研究:随机异质材料中的场涨落、微观结构演化和耦合现象
- 批准号:
0231867 - 财政年份:2003
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
Nonlinear Homogenization and Applications to Porous and Nematic Elastomers
非线性均质化及其在多孔和向列弹性体中的应用
- 批准号:
0204617 - 财政年份:2002
- 资助金额:
$ 23.25万 - 项目类别:
Continuing grant
Macroscopic Behavior and Field Fluctuations in Random Heterogeneous Materials: Theory and Applications
随机异质材料的宏观行为和场涨落:理论与应用
- 批准号:
0201454 - 财政年份:2002
- 资助金额:
$ 23.25万 - 项目类别:
Continuing grant
相似海外基金
CAREER: Interplay between Convex and Nonconvex Optimization for Control
职业:凸和非凸优化控制之间的相互作用
- 批准号:
2340713 - 财政年份:2024
- 资助金额:
$ 23.25万 - 项目类别:
Continuing Grant
CAREER: Isoperimetric and Minkowski Problems in Convex Geometric Analysis
职业:凸几何分析中的等周和闵可夫斯基问题
- 批准号:
2337630 - 财政年份:2024
- 资助金额:
$ 23.25万 - 项目类别:
Continuing Grant
Number Theory, Potential Theory, and Convex Optimization
数论、势论和凸优化
- 批准号:
2401242 - 财政年份:2024
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
- 批准号:
2236493 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Continuing Grant
CIF: Small: An Algebraic, Convex, and Scalable Framework for Kernel Learning with Activation Functions
CIF:小型:具有激活函数的核学习的代数、凸性和可扩展框架
- 批准号:
2323532 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
Collaborative Research: Consensus and Distributed Optimization in Non-Convex Environments with Applications to Networked Machine Learning
协作研究:非凸环境中的共识和分布式优化及其在网络机器学习中的应用
- 批准号:
2240789 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
Jointly convex operator perspective map having the power monotone property.
具有幂单调性质的联合凸算子透视图。
- 批准号:
23K03141 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of algorithms for resouce allocation: an approach from market design and discrete convex analysis
资源分配算法分析:市场设计和离散凸分析的方法
- 批准号:
22KJ0717 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Demystifying Deep Machine Learning Models using Convex Optimization for Reliable AI
职业:使用凸优化揭开深度机器学习模型的神秘面纱,实现可靠的人工智能
- 批准号:
2236829 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Continuing Grant