Collaborative Research: Trust-Search Methods for Inverse Problems in Imaging
合作研究:成像反问题的信任搜索方法
基本信息
- 批准号:1333326
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this award is to develop and implement first-order trust-search methods for use in large-scale data-generated optimization problems. Data-generated problems arise in applications such as signal and image processing. These problems are especially difficult to solve since the data are often high dimensional and are noisy, incomplete, and/or inexact. This research will develop first-order quasi-Newton trust-search methods for solving large data-generated problems. The methods to be used are trust-search methods, which are hybridizations of the most fundamental types of methods for unconstrained optimization: trust-region methods and line-search methods. Trust-search methods seek to implement line-search strategies in combination with trust-region theoretics to obtain more robust methods.If successful, the results of this research will help scientists and engineers solve optimization problems involving large volumes of corrupted data. In today's world, scientific data are more abundant than ever before; moreover, projects are already underway to produce even more data at a faster rate. To keep pace, the emerging field of "big data" requires sophisticated, fast, robust, and large-scale numerical algorithms. This research will use linear algebra and optimization theory to develop software for processing and analyzing very large data sets. In particular, the results of this research will help solve important problems in image processing applications such as medical imaging, low-light video surveillance, and nocturnal ecological activity monitoring, where the generated data are not only very large but are very noisy. The algorithms will be disseminated publically for use within and outside the scientific community. Graduate students will be trained in scientific research and programming through this research, and the participation of students from under-represented backgrounds will be highly encouraged.
该奖项的研究目标是开发和实现用于大规模数据生成优化问题的一阶信任搜索方法。在信号和图像处理等应用中会出现数据生成问题。这些问题尤其难以解决,因为数据通常是高维的,并且有噪声、不完整和/或不准确。这项研究将开发一阶拟牛顿信任搜索方法来解决大数据生成问题。要使用的方法是信任搜索方法,它是无约束优化的最基本类型的方法的混合:信赖域方法和线搜索方法。信任搜索方法试图将线搜索策略与信赖域理论相结合,以获得更健壮的方法,如果成功,该研究结果将帮助科学家和工程师解决涉及大量损坏数据的优化问题。在当今世界,科学数据比以往任何时候都更加丰富;此外,已经在进行以更快的速度产生更多数据的项目。为了跟上步伐,新兴的大数据领域需要复杂、快速、健壮和大规模的数值算法。这项研究将使用线性代数和最优化理论来开发处理和分析超大数据集的软件。特别是,本研究的成果将有助于解决医学成像、微光视频监控、夜间生态活动监测等图像处理应用中的重要问题,这些应用产生的数据量不仅非常大,而且非常噪声。这些算法将被公开传播,供科学界内外使用。通过这项研究,研究生将接受科学研究和编程方面的培训,并将高度鼓励来自代表性不足背景的学生参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roummel Marcia其他文献
Roummel Marcia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roummel Marcia', 18)}}的其他基金
BIGDATA: IA: Collaborative Research: Parsimonious Anomaly Detection in Sequencing Data
BIGDATA:IA:协作研究:测序数据中的简约异常检测
- 批准号:
1741490 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
REU Site: Applied Research in Modeling and Data-Enabled Science (ARCHIMEDES) Program
REU 站点:建模和数据科学应用研究 (ARCHIMEDES) 计划
- 批准号:
1359484 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Second-order methods for large-scale optimization in compressed sensing
合作研究:压缩感知大规模优化的二阶方法
- 批准号:
0965711 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Second-order methods for large-scale optimization in compressed sensing
合作研究:压缩感知大规模优化的二阶方法
- 批准号:
0811062 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: U.S. institutions after COVID-19: Trust, accountability, and public perceptions
合作研究:COVID-19 后的美国机构:信任、责任和公众看法
- 批准号:
2422394 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Trust but Verify: The Use of Intuition in Engineering Problem Solving
合作研究:RUI:信任但验证:直觉在工程问题解决中的运用
- 批准号:
2325524 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Trust but Verify: The Use of Intuition in Engineering Problem Solving
合作研究:RUI:信任但验证:直觉在工程问题解决中的运用
- 批准号:
2325525 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Removing Trust Assumptions from Encryption Systems
协作研究:SaTC:核心:中:从加密系统中删除信任假设
- 批准号:
2318701 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: OAC Core: Zero-trust and Traceable Data Infrastructure for Health IoT Data Storage and Sharing
合作研究:OAC Core:用于健康物联网数据存储和共享的零信任和可追溯的数据基础设施
- 批准号:
2312973 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Trust but Verify: The Use of Intuition in Engineering Problem Solving
合作研究:RUI:信任但验证:直觉在工程问题解决中的运用
- 批准号:
2325523 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Zero-trust and Traceable Data Infrastructure for Health IoT Data Storage and Sharing
合作研究:OAC Core:用于健康物联网数据存储和共享的零信任和可追溯的数据基础设施
- 批准号:
2312974 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Removing Trust Assumptions from Encryption Systems
协作研究:SaTC:核心:中:从加密系统中删除信任假设
- 批准号:
2318702 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Foundations of Trust-Centered Multi-Agent Distributed Coordination
协作研究:SaTC:核心:媒介:以信任为中心的多智能体分布式协调的基础
- 批准号:
2147641 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Foundations of Trust-Centered Multi-Agent Distributed Coordination
协作研究:SaTC:核心:媒介:以信任为中心的多智能体分布式协调的基础
- 批准号:
2147631 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant