Linking Electronic Structure with Continuum Fields: Coarse-Graining Density Functional Theory

将电子结构与连续场联系起来:粗粒密度泛函理论

基本信息

  • 批准号:
    1333500
  • 负责人:
  • 金额:
    $ 23.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

The research objective of this award is to investigate the fundamental impact of crystal defects on material behavior through quantum-mechanical Density Functional Theory calculations. In particular, a seamless multiscale method that will enable the accurate study of defects at realistic concentrations is proposed. This method will be developed in the framework of a novel linear-scaling technique for Density Functional Theory, which traditionally has a cubic-scaling with respect to the number of atoms. Additionally, numerical coarse-graining approximations tailored to the nature of the defect will be utilized. The optimality of the overall formulation will be ensured through rigorous mathematical analysis. As an application, the proposed multiscale method will be used to study the effect of alloying on the strength and ductility of Magnesium with the goal of discovering novel alloys. Also, constitutive laws will be generated for dislocation dynamics simulations and, using these, the size-dependent strength observed during compression of nanopillars will be investigated. If successful, the project will provide a breakthrough in bridging the electronic structure and continuum descriptions of crystal defects. This will significantly advance the current understanding of deformation and failure mechanisms in solids. Consequently, it will accelerate the discovery of novel materials with properties tailored to technological applications. As an example, new magnesium alloys with improved specific strength will have a noticeable impact on the transportation industry where there is a need for weight reduction without compromising structural integrity. Such alloys will help reduce fuel consumption, thereby also having a positive influence on the environment. The educational efforts of the project include broad dissemination of research results through social media and academic curriculum, creating a new website that documents the state of the art in crystal defect calculations, organizing conference symposia, and training graduate, undergraduate and high school students.
该奖项的研究目标是通过量子力学密度泛函理论计算研究晶体缺陷对材料行为的根本影响。特别是,提出了一种无缝的多尺度方法,这将使在现实浓度的缺陷的准确研究。这种方法将在密度泛函理论的一种新的线性标度技术的框架内开发,该技术传统上具有相对于原子数的非线性标度。此外,将利用适合缺陷性质的数值粗粒化近似。将通过严格的数学分析确保整个配方的最佳性。作为应用,提出的多尺度方法将用于研究合金化对镁的强度和塑性的影响,目的是发现新的合金。此外,本构关系将产生位错动力学模拟,并使用这些,纳米柱压缩过程中观察到的尺寸依赖的强度将进行调查。如果成功,该项目将在弥合晶体缺陷的电子结构和连续描述方面取得突破。这将极大地推进目前对固体变形和破坏机制的理解。因此,它将加速发现具有适合技术应用的特性的新材料。例如,具有改进的比强度的新型镁合金将对需要在不损害结构完整性的情况下减轻重量的运输行业产生显著影响。这种合金将有助于减少燃料消耗,从而对环境产生积极影响。该项目的教育工作包括通过社交媒体和学术课程广泛传播研究成果,创建一个记录晶体缺陷计算最新技术的新网站,组织会议研讨会,以及培训研究生,本科生和高中生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Phanish Suryanarayana其他文献

On real-space Density Functional Theory for non-orthogonal crystal systems: Kronecker product formulation of the kinetic energy operator
非正交晶体系统的实空间密度泛函理论:动能算子的克罗内克乘积公式
  • DOI:
    10.1016/j.cplett.2018.04.018
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Abhiraj Sharma;Phanish Suryanarayana
  • 通讯作者:
    Phanish Suryanarayana
On the calculation of the stress tensor in real-space Kohn-Sham density functional theory.
实空间Kohn-Sham密度泛函理论中应力张量的计算。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Abhiraj Sharma;Phanish Suryanarayana
  • 通讯作者:
    Phanish Suryanarayana
Spectral scheme for atomic structure calculations in density functional theory
密度泛函理论中原子结构计算的谱图
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sayan Bhowmik;J. Pask;A. Medford;Phanish Suryanarayana
  • 通讯作者:
    Phanish Suryanarayana
SQDFT: Spectral Quadrature method for large-scale parallel O(N) Kohn-Sham calculations at high temperature
SQDFT:高温下大规模并行 O(N) Kohn-Sham 计算的谱求积方法
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Phanish Suryanarayana;Phanisri P. Pratapa;Abhiraj Sharma;J. Pask
  • 通讯作者:
    J. Pask
Coarse-graining Kohn-Sham Density Functional Theory
粗粒度 Kohn-Sham 密度泛函理论
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Phanish Suryanarayana;K. Bhattacharya;M. Ortiz
  • 通讯作者:
    M. Ortiz

Phanish Suryanarayana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Phanish Suryanarayana', 18)}}的其他基金

CDS&E: DFT-informed Topology Optimization Upscaling: An Accelerated Fixed-point Iteration Approach
CDS
  • 批准号:
    1663244
  • 财政年份:
    2017
  • 资助金额:
    $ 23.76万
  • 项目类别:
    Standard Grant
CAREER: Role of Symmetry in the Properties of Nanostructures: A First Principles Approach
职业:对称性在纳米结构特性中的作用:第一原理方法
  • 批准号:
    1553212
  • 财政年份:
    2016
  • 资助金额:
    $ 23.76万
  • 项目类别:
    Standard Grant

相似海外基金

Understanding the electronic structure landscape in wide band gap metal halide perovskites
了解宽带隙金属卤化物钙钛矿的电子结构景观
  • 批准号:
    EP/X039285/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.76万
  • 项目类别:
    Research Grant
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 23.76万
  • 项目类别:
    EU-Funded
Conference: Electronic Structure Workshop (ES24)
会议:电子结构研讨会(ES24)
  • 批准号:
    2414597
  • 财政年份:
    2024
  • 资助金额:
    $ 23.76万
  • 项目类别:
    Standard Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
  • 批准号:
    2344734
  • 财政年份:
    2024
  • 资助金额:
    $ 23.76万
  • 项目类别:
    Standard Grant
Probing the Electronic Structure and Chemical Bonding of Cryogenically-Cooled Boron and Metal-Boride Nanoclusters
探究低温冷却硼和金属硼化物纳米团簇的电子结构和化学键合
  • 批准号:
    2403841
  • 财政年份:
    2024
  • 资助金额:
    $ 23.76万
  • 项目类别:
    Standard Grant
High color purity and multicolor luminescence based on precise synthesis and electronic structure design of multinary quantum dots
基于多元量子点的精确合成和电子结构设计的高色纯度和多色发光
  • 批准号:
    23H01786
  • 财政年份:
    2023
  • 资助金额:
    $ 23.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Theoretical Design Methods of Catalysts Based on Electronic Structure Theory and Their Applications to Design and Development of High-Performance Molecular Catalysts
基于电子结构理论的催化剂理论设计方法发展及其在高性能分子催化剂设计与开发中的应用
  • 批准号:
    22KJ0003
  • 财政年份:
    2023
  • 资助金额:
    $ 23.76万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Theoretical study of novel topological electronic properties arising from the structure and molecular degree of freedom of high-dimensional molecular crystals
高维分子晶体的结构和分子自由度引起的新型拓扑电子特性的理论研究
  • 批准号:
    23K03322
  • 财政年份:
    2023
  • 资助金额:
    $ 23.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bond Dissociation Energies and Electronic Structure of Small Transition Metal and Lanthanide Molecules
过渡金属和镧系小分子的键解离能和电子结构
  • 批准号:
    2305293
  • 财政年份:
    2023
  • 资助金额:
    $ 23.76万
  • 项目类别:
    Standard Grant
Accurate Electronic and Vibrational Structure Calculations of Metal-Containing Small Molecules of Importance to Precision Measurement and Laser Cooling
含金属小分子的精确电子和振动结构计算对于精密测量和激光冷却具有重要意义
  • 批准号:
    2309253
  • 财政年份:
    2023
  • 资助金额:
    $ 23.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了