Collaborative Research: Binary Constrained Convex Quadratic Programs with Complementarity Constraints and Extensions

协作研究:具有互补约束和扩展的二元约束凸二次规划

基本信息

  • 批准号:
    1333902
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

The objective of this collaborative research project is to undertake an in-depth study of the class of binary-constrained (BC), mathematical programs with complementarity constraints (MPCCs). Such programs form a broad class of constrained optimization problems with binary variables where some of the constraints are described by the disjunctive condition of complementarity. The latter features arise from a number of applied problems where the discrete variables are used to model binary decisions and the complementarity constraints are the result of some lower-level optimality or equilibrium conditions. Building on recent advances in the global resolution of linear programs with linear complementarity constraints (LPCCs) and their extensions to problems with convex quadratic objective functions (QPCCs), both with continuous variables only, this investigation will initially develop efficient solution methods for the global resolution of binary-constrained LPCCs and QPCCs. Extensions of the proposed methodology to the broader class of binary-constrained convex mathematical programs with complementarity constraints will be the second phase of the investigation.If successful, the results of this research will lead to improved understanding of such problems as optimal plant location in competitive markets, discrete-choice portfolio selection under risk, classification in medical decision making, and compressed sensing in signal and image processing, as well as many related applications in complex engineering and economic systems involving hierarchical decision making with logical constraints. Computational advances from diverse areas of optimization need to be integrated in order to effectively handle the discrete and continuous features of the problems under consideration. The integration of such subdomains of optimization and the expected theoretical advances in understanding the intrinsic properties of this new class of optimization problems form the intellectual core of the proposed project.
这一合作研究项目的目标是深入研究二进制约束(BC),即具有互补约束的数学规划(MPCCs)。这类程序形成了一大类具有二元变量的约束优化问题,其中一些约束是用互补的析取条件来描述的。后一种特征源于许多应用问题,其中离散变量被用来对二元决策进行建模,而互补约束是一些较低水平的最优性或均衡条件的结果。基于线性互补约束线性规划(LPCCs)全局求解的最新进展及其对具有凸二次目标函数(QPCCs)的问题的推广,这两个问题都只具有连续变量,本研究将初步开发用于二元约束LPCCs和QPCCs全局求解的有效方法。如果研究成功,研究结果将有助于更好地理解竞争市场中的最优工厂选址、风险下的离散投资组合选择、医疗决策中的分类以及信号和图像处理中的压缩感知等问题,以及在复杂工程和经济系统中涉及逻辑约束分层决策的许多相关应用。需要整合来自不同优化领域的计算进展,以便有效地处理所考虑问题的离散和连续特征。这些优化子域的集成以及在理解这类新的优化问题的内在属性方面预期的理论进步构成了拟议项目的智力核心。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jong-Shi Pang其他文献

An equivalence between two algorithms for quadratic programming
  • DOI:
    10.1007/bf01589342
  • 发表时间:
    1981-12-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Jong-Shi Pang
  • 通讯作者:
    Jong-Shi Pang
Correction to: On the pervasiveness of difference-convexity in optimization and statistics
  • DOI:
    10.1007/s10107-019-01378-z
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Maher Nouiehed;Jong-Shi Pang;Meisam Razaviyayn
  • 通讯作者:
    Meisam Razaviyayn
Treatment learning with Gini constraints by Heaviside composite optimization and a progressive method
Two-stage parallel iterative methods for the symmetric linear complementarity problem
  • DOI:
    10.1007/bf02186474
  • 发表时间:
    1988-12-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Jong-Shi Pang;Jiann-Min Yang
  • 通讯作者:
    Jiann-Min Yang
Differential variational inequalities
  • DOI:
    10.1007/s10107-006-0052-x
  • 发表时间:
    2007-01-24
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Jong-Shi Pang;David E. Stewart
  • 通讯作者:
    David E. Stewart

Jong-Shi Pang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jong-Shi Pang', 18)}}的其他基金

Conference on Nonconvex Statistical Learning, University of Southern California, May 26-27, 2017
非凸统计学习会议,南加州大学,2017 年 5 月 26-27 日
  • 批准号:
    1719635
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Foundations of Nonconvex Problems in BigData Science and Engineering: Models, Algorithms, and Analysis
BIGDATA:协作研究:F:大数据科学与工程中非凸问题的基础:模型、算法和分析
  • 批准号:
    1632971
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Nash Equilibrium Problems under Uncertainty
合作研究:不确定性下的纳什均衡问题
  • 批准号:
    1538605
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
BECS Collaborative Research: Modeling the Dynamics of Traffic User Equilibria Using Differential Variational Inequalities
BECS 协作研究:使用微分变分不等式对交通用户均衡动态进行建模
  • 批准号:
    1412544
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Binary Constrained Convex Quadratic Programs with Complementarity Constraints and Extensions
协作研究:具有互补约束和扩展的二元约束凸二次规划
  • 批准号:
    1402052
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
BECS Collaborative Research: Modeling the Dynamics of Traffic User Equilibria Using Differential Variational Inequalities
BECS 协作研究:使用微分变分不等式对交通用户均衡动态进行建模
  • 批准号:
    1024984
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Analysis and Control of Complementary Systems
互补系统的分析与控制
  • 批准号:
    0754374
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Extended Nash Equilibria and Their Applications
扩展纳什均衡及其应用
  • 批准号:
    0802022
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Extended Nash Equilibria and Their Applications
扩展纳什均衡及其应用
  • 批准号:
    0516023
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Analysis and Control of Complementary Systems
互补系统的分析与控制
  • 批准号:
    0508986
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding Compact Binary Formation With Gravitational Wave Observations
合作研究:通过引力波观测了解致密双星形成
  • 批准号:
    2307147
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Compact Binary Formation With Gravitational Wave Observations
合作研究:通过引力波观测了解致密双星形成
  • 批准号:
    2307146
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: A qualitative inquiry into sex/gender narratives in undergraduate biology and their impacts on transgender, non-binary, and gender non-conforming students
合作研究:对本科生物学中的性/性别叙事及其对跨性别、非二元和性别不合格学生的影响进行定性调查
  • 批准号:
    2201809
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Compositional and Atomic-Scale Ordering Effects on Aqueous Passivation of Binary BCC and FCC Alloys
合作研究:二元 BCC 和 FCC 合金水相钝化的成分和原子尺度有序效应
  • 批准号:
    2208865
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Compositional and Atomic-Scale Ordering Effects on Aqueous Passivation of Binary BCC and FCC Alloys
合作研究:二元 BCC 和 FCC 合金水相钝化的成分和原子尺度有序效应
  • 批准号:
    2208848
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Toward Binary Neutron Star Mergers on a Moving-mesh
合作研究:WoU-MMA:在移动网格上实现双中子星合并
  • 批准号:
    2227080
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: A qualitative inquiry into sex/gender narratives in undergraduate biology and their impacts on transgender, non-binary, and gender non-conforming students
合作研究:对本科生物学中的性/性别叙事及其对跨性别、非二元和性别不合格学生的影响进行定性调查
  • 批准号:
    2201808
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: A qualitative inquiry into sex/gender narratives in undergraduate biology and their impacts on transgender, non-binary, and gender non-conforming students
合作研究:对本科生物学中的性/性别叙事及其对跨性别、非二元和性别不合格学生的影响进行定性调查
  • 批准号:
    2201810
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: WoU-MMA: Toward Binary Neutron Star Mergers on a Moving-mesh
合作研究:WoU-MMA:在移动网格上实现双中子星合并
  • 批准号:
    2108072
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Toward Binary Neutron Star Mergers on a Moving-mesh
合作研究:WoU-MMA:在移动网格上实现双中子星合并
  • 批准号:
    2108269
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了