BIGDATA: Collaborative Research: F: Foundations of Nonconvex Problems in BigData Science and Engineering: Models, Algorithms, and Analysis

BIGDATA:协作研究:F:大数据科学与工程中非凸问题的基础:模型、算法和分析

基本信息

  • 批准号:
    1632971
  • 负责人:
  • 金额:
    $ 40.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

In today's digital world, huge amounts of data, i.e., big data, can be found in almost every aspect of scientific research and human activity. These data need to be managed effectively for reliable prediction and inference to improve decision making. Statistical learning is an emergent scientific discipline wherein mathematical modeling, computational algorithms, and statistical analysis are jointly employed to address these challenging data management problems. Invariably, quantitative criteria need to be introduced for the overall learning process in order to gauge the quality of the solutions obtained. This research focuses on two important criteria: data fitness and sparsity representation of the underlying learning model. Potential applications of the results can be found in computational statistics, compressed sensing, imaging, machine learning, bio-informatics, portfolio selection, and decision making under uncertainty, among many areas involving big data.Till now, convex optimization has been the dominant methodology for statistical learning in which the two criteria employed are expressed by convex functions either to be optimized and/or set as constraints of the variables being sought. Recently, non-convex functions of the difference-of-convex (DC) type and the difference-of-convex algorithm (DCA) have been shown to yield superior results in many contexts and serve as the motivation for this project. The goal is to develop a solid foundation and a unified framework to address many fundamental issues in big data problems in which non-convexity and non-differentiability are present in the optimization problems to be solved. These two non-standard features in computational statistical learning are challenging and their rigorous treatment requires the fusion of expertise from different domains of mathematical sciences. Technical issues to be investigated will cover the optimality, sparsity, and statistical properties of computable solutions to the non-convex, non-smooth optimization problems arising from statistical learning and its many applications. Novel algorithms will be developed and tested first on synthetic data sets for preliminary experimentation and then on publicly available data sets for realism; comparisons will be made among different formulations of the learning problems.
在当今的数字世界中,大量的数据,即,大数据几乎可以在科学研究和人类活动的各个方面找到。 这些数据需要有效管理,以进行可靠的预测和推理,从而改善决策。 统计学习是一门新兴的科学学科,其中数学建模,计算算法和统计分析联合使用,以解决这些具有挑战性的数据管理问题。 因此,需要为整个学习过程引入量化标准,以衡量所获得解决方案的质量。本研究着重于两个重要的标准:数据适应度和底层学习模型的稀疏表示。 在涉及大数据的许多领域中,可以在计算统计、压缩感知、成像、机器学习、生物信息学、投资组合选择和不确定性下的决策中找到结果的潜在应用。凸优化已经成为统计学习的主要方法,其中所采用的两个标准由凸函数来表示,或者被优化,或者/或者被设置为所寻找的变量的约束。 最近,非凸函数的差分凸(DC)型和差分凸算法(DCA)已被证明在许多情况下产生上级的结果,并作为本项目的动机。 目标是开发一个坚实的基础和统一的框架,以解决大数据问题中的许多基本问题,其中非凸性和不可微性存在于待解决的优化问题中。计算统计学习中的这两个非标准特征是具有挑战性的,它们的严格处理需要融合来自不同数学科学领域的专业知识。 要调查的技术问题将涵盖最优性,稀疏性和统计特性的可计算解决方案的非凸,非光滑的优化问题所产生的统计学习及其许多应用。 新的算法将首先在合成数据集上进行初步实验和测试,然后在公开可用的数据集上进行现实主义;将在学习问题的不同配方之间进行比较。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DIFFERENCE-OF-CONVEX LEARNING: DIRECTIONAL STATIONARITY, OPTIMALITY, AND SPARSITY
  • DOI:
    10.1137/16m1084754
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Ahn, Miju;Pang, Jong-Shi;Xin, Jack
  • 通讯作者:
    Xin, Jack
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jong-Shi Pang其他文献

An equivalence between two algorithms for quadratic programming
  • DOI:
    10.1007/bf01589342
  • 发表时间:
    1981-12-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Jong-Shi Pang
  • 通讯作者:
    Jong-Shi Pang
Correction to: On the pervasiveness of difference-convexity in optimization and statistics
  • DOI:
    10.1007/s10107-019-01378-z
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Maher Nouiehed;Jong-Shi Pang;Meisam Razaviyayn
  • 通讯作者:
    Meisam Razaviyayn
Treatment learning with Gini constraints by Heaviside composite optimization and a progressive method
Two-stage parallel iterative methods for the symmetric linear complementarity problem
  • DOI:
    10.1007/bf02186474
  • 发表时间:
    1988-12-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Jong-Shi Pang;Jiann-Min Yang
  • 通讯作者:
    Jiann-Min Yang
Differential variational inequalities
  • DOI:
    10.1007/s10107-006-0052-x
  • 发表时间:
    2007-01-24
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Jong-Shi Pang;David E. Stewart
  • 通讯作者:
    David E. Stewart

Jong-Shi Pang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jong-Shi Pang', 18)}}的其他基金

Conference on Nonconvex Statistical Learning, University of Southern California, May 26-27, 2017
非凸统计学习会议,南加州大学,2017 年 5 月 26-27 日
  • 批准号:
    1719635
  • 财政年份:
    2017
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Nash Equilibrium Problems under Uncertainty
合作研究:不确定性下的纳什均衡问题
  • 批准号:
    1538605
  • 财政年份:
    2015
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Binary Constrained Convex Quadratic Programs with Complementarity Constraints and Extensions
协作研究:具有互补约束和扩展的二元约束凸二次规划
  • 批准号:
    1333902
  • 财政年份:
    2013
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
BECS Collaborative Research: Modeling the Dynamics of Traffic User Equilibria Using Differential Variational Inequalities
BECS 协作研究:使用微分变分不等式对交通用户均衡动态进行建模
  • 批准号:
    1412544
  • 财政年份:
    2013
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Binary Constrained Convex Quadratic Programs with Complementarity Constraints and Extensions
协作研究:具有互补约束和扩展的二元约束凸二次规划
  • 批准号:
    1402052
  • 财政年份:
    2013
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
BECS Collaborative Research: Modeling the Dynamics of Traffic User Equilibria Using Differential Variational Inequalities
BECS 协作研究:使用微分变分不等式对交通用户均衡动态进行建模
  • 批准号:
    1024984
  • 财政年份:
    2010
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Analysis and Control of Complementary Systems
互补系统的分析与控制
  • 批准号:
    0754374
  • 财政年份:
    2007
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Extended Nash Equilibria and Their Applications
扩展纳什均衡及其应用
  • 批准号:
    0802022
  • 财政年份:
    2007
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Extended Nash Equilibria and Their Applications
扩展纳什均衡及其应用
  • 批准号:
    0516023
  • 财政年份:
    2005
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
Analysis and Control of Complementary Systems
互补系统的分析与控制
  • 批准号:
    0508986
  • 财政年份:
    2005
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了