BIGDATA: Collaborative Research: F: Foundations of Nonconvex Problems in BigData Science and Engineering: Models, Algorithms, and Analysis
BIGDATA:协作研究:F:大数据科学与工程中非凸问题的基础:模型、算法和分析
基本信息
- 批准号:1632971
- 负责人:
- 金额:$ 40.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In today's digital world, huge amounts of data, i.e., big data, can be found in almost every aspect of scientific research and human activity. These data need to be managed effectively for reliable prediction and inference to improve decision making. Statistical learning is an emergent scientific discipline wherein mathematical modeling, computational algorithms, and statistical analysis are jointly employed to address these challenging data management problems. Invariably, quantitative criteria need to be introduced for the overall learning process in order to gauge the quality of the solutions obtained. This research focuses on two important criteria: data fitness and sparsity representation of the underlying learning model. Potential applications of the results can be found in computational statistics, compressed sensing, imaging, machine learning, bio-informatics, portfolio selection, and decision making under uncertainty, among many areas involving big data.Till now, convex optimization has been the dominant methodology for statistical learning in which the two criteria employed are expressed by convex functions either to be optimized and/or set as constraints of the variables being sought. Recently, non-convex functions of the difference-of-convex (DC) type and the difference-of-convex algorithm (DCA) have been shown to yield superior results in many contexts and serve as the motivation for this project. The goal is to develop a solid foundation and a unified framework to address many fundamental issues in big data problems in which non-convexity and non-differentiability are present in the optimization problems to be solved. These two non-standard features in computational statistical learning are challenging and their rigorous treatment requires the fusion of expertise from different domains of mathematical sciences. Technical issues to be investigated will cover the optimality, sparsity, and statistical properties of computable solutions to the non-convex, non-smooth optimization problems arising from statistical learning and its many applications. Novel algorithms will be developed and tested first on synthetic data sets for preliminary experimentation and then on publicly available data sets for realism; comparisons will be made among different formulations of the learning problems.
在当今的数字世界中,海量数据,即大数据,几乎可以在科学研究和人类活动的各个方面找到。需要对这些数据进行有效管理,以便进行可靠的预测和推断,从而改进决策。统计学习是一门新兴的科学学科,其中数学建模、计算算法和统计分析被联合用于解决这些具有挑战性的数据管理问题。通常,需要为整个学习过程引入量化标准,以衡量所获得的解决方案的质量。这项研究的重点是两个重要的标准:数据适合性和底层学习模型的稀疏表示。在许多涉及大数据的领域中,这些结果在计算统计、压缩感知、成像、机器学习、生物信息学、投资组合选择和不确定情况下的决策中具有潜在的应用。到目前为止,凸优化一直是统计学习的主要方法,其中所使用的两个准则用凸函数来表示以被优化和/或设置为所求变量的约束。最近,凸差(DC)型非凸函数和凸差算法(DCA)已被证明在许多情况下都能产生优越的结果,并成为本项目的动机。目标是建立一个坚实的基础和统一的框架,以解决大数据问题中的许多基本问题,其中非凸性和不可微性存在于要解决的优化问题中。计算统计学习中的这两个非标准特征具有挑战性,它们的严格处理需要来自数学科学不同领域的专业知识的融合。要研究的技术问题将包括统计学习及其许多应用中产生的非凸、非光滑优化问题的可计算解的最优性、稀疏性和统计性质。新的算法将首先在用于初步实验的合成数据集上开发和测试,然后在用于现实的公开可用数据集上进行测试;将在不同的学习问题公式之间进行比较。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DIFFERENCE-OF-CONVEX LEARNING: DIRECTIONAL STATIONARITY, OPTIMALITY, AND SPARSITY
- DOI:10.1137/16m1084754
- 发表时间:2017-01-01
- 期刊:
- 影响因子:3.1
- 作者:Ahn, Miju;Pang, Jong-Shi;Xin, Jack
- 通讯作者:Xin, Jack
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jong-Shi Pang其他文献
An equivalence between two algorithms for quadratic programming
- DOI:
10.1007/bf01589342 - 发表时间:
1981-12-01 - 期刊:
- 影响因子:2.500
- 作者:
Jong-Shi Pang - 通讯作者:
Jong-Shi Pang
Correction to: On the pervasiveness of difference-convexity in optimization and statistics
- DOI:
10.1007/s10107-019-01378-z - 发表时间:
2019-03-01 - 期刊:
- 影响因子:2.500
- 作者:
Maher Nouiehed;Jong-Shi Pang;Meisam Razaviyayn - 通讯作者:
Meisam Razaviyayn
Treatment learning with Gini constraints by Heaviside composite optimization and a progressive method
- DOI:
10.1007/s10589-025-00706-8 - 发表时间:
2025-06-21 - 期刊:
- 影响因子:2.000
- 作者:
Yue Fang;Junyi Liu;Jong-Shi Pang - 通讯作者:
Jong-Shi Pang
Two-stage parallel iterative methods for the symmetric linear complementarity problem
- DOI:
10.1007/bf02186474 - 发表时间:
1988-12-01 - 期刊:
- 影响因子:4.500
- 作者:
Jong-Shi Pang;Jiann-Min Yang - 通讯作者:
Jiann-Min Yang
Differential variational inequalities
- DOI:
10.1007/s10107-006-0052-x - 发表时间:
2007-01-24 - 期刊:
- 影响因子:2.500
- 作者:
Jong-Shi Pang;David E. Stewart - 通讯作者:
David E. Stewart
Jong-Shi Pang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jong-Shi Pang', 18)}}的其他基金
Conference on Nonconvex Statistical Learning, University of Southern California, May 26-27, 2017
非凸统计学习会议,南加州大学,2017 年 5 月 26-27 日
- 批准号:
1719635 - 财政年份:2017
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
Collaborative Research: Nash Equilibrium Problems under Uncertainty
合作研究:不确定性下的纳什均衡问题
- 批准号:
1538605 - 财政年份:2015
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
Collaborative Research: Binary Constrained Convex Quadratic Programs with Complementarity Constraints and Extensions
协作研究:具有互补约束和扩展的二元约束凸二次规划
- 批准号:
1333902 - 财政年份:2013
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
BECS Collaborative Research: Modeling the Dynamics of Traffic User Equilibria Using Differential Variational Inequalities
BECS 协作研究:使用微分变分不等式对交通用户均衡动态进行建模
- 批准号:
1412544 - 财政年份:2013
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
Collaborative Research: Binary Constrained Convex Quadratic Programs with Complementarity Constraints and Extensions
协作研究:具有互补约束和扩展的二元约束凸二次规划
- 批准号:
1402052 - 财政年份:2013
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
BECS Collaborative Research: Modeling the Dynamics of Traffic User Equilibria Using Differential Variational Inequalities
BECS 协作研究:使用微分变分不等式对交通用户均衡动态进行建模
- 批准号:
1024984 - 财政年份:2010
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
Analysis and Control of Complementary Systems
互补系统的分析与控制
- 批准号:
0754374 - 财政年份:2007
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
Extended Nash Equilibria and Their Applications
扩展纳什均衡及其应用
- 批准号:
0802022 - 财政年份:2007
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
Extended Nash Equilibria and Their Applications
扩展纳什均衡及其应用
- 批准号:
0516023 - 财政年份:2005
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
Analysis and Control of Complementary Systems
互补系统的分析与控制
- 批准号:
0508986 - 财政年份:2005
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
- 批准号:
2027516 - 财政年份:2020
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
- 批准号:
1934319 - 财政年份:2019
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838022 - 财政年份:2019
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
- 批准号:
1926250 - 财政年份:2019
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
1947584 - 财政年份:2019
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
1837964 - 财政年份:2019
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838222 - 财政年份:2019
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838248 - 财政年份:2019
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant














{{item.name}}会员




