Semiconductor/Mixed-Conducting-Oxide Heterojunction for Photo-electrochemical H2O & CO2 Splitting at Elevated Temperatures

用于光电化学 H2O 的半导体/混合导电氧化物异质结

基本信息

  • 批准号:
    1336835
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

PI: Chueh, WilliamProposal Number: 1336835Institution: Stanford UniversityTitle: Semiconductor/Mixed-Conducting-Oxide Heterojunction for Photo-electrochemical H2O and CO2 Splitting at Elevated TemperaturesMaking solar energy available when and where it is required is crucial towards increasing its utilization. Dissociating steam and/or carbon dioxide to chemical fuels is a promising route for storing solar energy. The objective of this work is to design a new class of photo-electrochemical cells that operates at 500 to 700 deg. C rather than at room temperature by utilizing an all solid-state design. Using an oxide heterojunction consisting of a semiconducting light absorber and a mixed oxygen ion and electron conducting oxide, incident solar energy above and below the band gap of the light absorber is converted to thermal energy, which in turn increases the solar-to-fuel efficiency. Unlike conventional photovoltaic-based approaches, here the solar-to-fuel efficiency increases, rather than decreases, with temperature. Thin-film heterojunctions consisting of oxides such as iron, vanadium, and titanium oxides will be evaluated for their potential in elevated temperature photo-electrochemical water and carbon dioxide splitting. The specific objective is to identify a combination of materials that delivers high solar-to-fuel efficiency and reliability over thousands of hours.The central component of this research is understanding and controlling charge generation, separation, and recombination at the heterojunction between a semiconducting oxide and a mixed ionic and electronic conducting oxide, at temperatures significantly above ambient. In photo-electrochemistry involving oxides, ionic defects such as vacancies must play an important role, yet it is not well understood. By combining rapid material screening, opto-electrochemical and in-situ synchrotron X-ray characterizations of oxide heterojunctions, this research aims to understand the interfacial chemistry and electronic properties at the junction of dissimilar solids under extreme conditions.This research seeks to enhance the viability of storing intermittent solar energy in chemical bonds, and increase the global utilization of solar energy. Beyond energy generation and storage, advanced understanding of charge transport at heterojunctions will benefit scientific fields such as catalysis and high temperature electronics, and applications such as solid-oxide fuel cells and sensors in extreme environments. The project work also provides research opportunities for one graduate student over the duration of the project. In addition to incorporating the results into undergraduate and graduate curriculums, the PI will develop a unique "Solar After Dark" outreach program. Human interaction with sunlight is one of the most ubiquitous phenomena in daily life and is an excellent vehicle to raise student interest in science and engineering.
主要研究者:Chueh,William提案编号:1336835机构:斯坦福大学标题:半导体/混合导电氧化物异质结光电化学H2O和CO2分裂在高温下使太阳能在需要的时候和地方是至关重要的,以提高其利用率。将蒸汽和/或二氧化碳分解为化学燃料是储存太阳能的一种有前途的途径。这项工作的目的是设计一种新型的光电化学电池,工作在500至700度。C,而不是在室温下,通过利用全固态设计。使用由半导体光吸收剂和混合的氧离子和电子传导氧化物组成的氧化物异质结,光吸收剂的带隙之上和之下的入射太阳能被转换成热能,这又增加了太阳能-燃料效率。与传统的基于光电转换的方法不同,这里的太阳能-燃料效率随着温度的增加而增加,而不是减少。由铁、钒和钛氧化物等氧化物组成的薄膜异质结将评估其在高温光电化学水和二氧化碳裂解中的潜力。具体目标是确定一种材料的组合,提供高的太阳能-燃料效率和可靠性超过数千小时。这项研究的核心组成部分是理解和控制电荷的产生,分离,和复合之间的异质结半导体氧化物和混合离子和电子导电氧化物,在温度显着高于环境。在涉及氧化物的光电化学中,离子缺陷(如空位)一定起着重要的作用,但人们对它的认识还不很清楚。本研究结合快速材料筛选、光电化学和同步辐射X射线原位表征氧化物异质结,旨在了解极端条件下异质固体结的界面化学和电子性质,旨在提高以化学键储存间歇性太阳能的可行性,提高太阳能的全球利用率。 除了能量产生和存储,对异质结电荷传输的深入了解将有利于催化和高温电子等科学领域,以及极端环境中的固体氧化物燃料电池和传感器等应用。该项目工作还提供了一个研究生在项目期间的研究机会。除了将结果纳入本科生和研究生课程外,PI还将开发一个独特的“天黑后的太阳能”推广计划。人类与阳光的互动是日常生活中最普遍的现象之一,也是提高学生对科学和工程兴趣的绝佳工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Chueh其他文献

Technoeconomic decision support for second-life batteries
针对二次利用电池的技术经济决策支持
  • DOI:
    10.1016/j.apenergy.2025.125800
  • 发表时间:
    2025-07-15
  • 期刊:
  • 影响因子:
    11.000
  • 作者:
    Jihan Zhuang;Amadeus Bach;Bruis H.C. van Vlijmen;Stefan J. Reichelstein;William Chueh;Simona Onori;Sally M. Benson
  • 通讯作者:
    Sally M. Benson

William Chueh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Chueh', 18)}}的其他基金

CAREER: Understanding Surface Redox Activity of Atomically-Flat Electroceramics
职业:了解原子平面电陶瓷的表面氧化还原活性
  • 批准号:
    1455369
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于MIXED Transformer和DS-TransUNet构建嵌入椎旁肌退变量化模块的体内校准骨密度模型检测骨质疏松的可行性研究。
  • 批准号:
    82302303
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Super selective hydrogen permeation through mixed proton and electron conducting asymmetric graphene based membrane
通过混合质子和电子传导不对称石墨烯基膜的超选择性氢渗透
  • 批准号:
    24K17588
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Elucidating the Roles of Electric Fields Within Mixed Ionic and Electronic Conducting Oxides Under Electrochemical Reducing Conditions
合作研究:阐明电化学还原条件下混合离子和电子导电氧化物中电场的作用
  • 批准号:
    2333166
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Development of ion-electron mixed conducting materials and its characterization
离子电子混合导电材料的研制及其表征
  • 批准号:
    22K05257
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure-property relationship in mixed conducting polymers
混合导电聚合物的结构-性能关系
  • 批准号:
    21H01992
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Performance evaluation of electrodes in intermediate-temperature solid oxide fuel cells with consideration of internal current leakage in proton-hole mixed conducting electrolytes
考虑质子空穴混合导电电解质内漏电流的中温固体氧化物燃料电池电极性能评估
  • 批准号:
    20J10149
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Morphology control of electron-ion mixed conducting polymer electrolyte and application to electrochemical devices
电子-离子混合导电聚合物电解质的形貌控制及其在电化学器件中的应用
  • 批准号:
    20K05628
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Elucidating the Roles of Electric Fields Within Mixed Ionic and Electronic Conducting Oxides Under Electrochemical Reducing Conditions
合作研究:阐明电化学还原条件下混合离子和电子导电氧化物中电场的作用
  • 批准号:
    1929314
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Elucidating the Roles of Electric Fields Within Mixed Ionic and Electronic Conducting Oxides Under Electrochemical Reducing Conditions
合作研究:阐明电化学还原条件下混合离子和电子导电氧化物中电场的作用
  • 批准号:
    1929306
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Energy materials based on single-ion conducting polymers mixed with zwitterions
基于与两性离子混合的单离子导电聚合物的能源材料
  • 批准号:
    1807934
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Reaction pathway in mixed-conducting oxide electrodes investigated by using patterned thin film model electrode
使用图案化薄膜模型电极研究混合导电氧化物电极的反应路径
  • 批准号:
    18H02067
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了