Proof Theoretic Aspects of Ergodic Ramsey Theory

遍历拉姆齐理论的证明理论方面

基本信息

  • 批准号:
    1340666
  • 负责人:
  • 金额:
    $ 3.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-23 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

This project deals with the development of methods in proof theory, particularly the area known as proof mining, and their application to Ramsey theory. Many theorems in Ramsey theory can be proven using infinitary methods, in the form of ultraproducts, nonstandard analysis, topological dynamics, and ergodic theory. Proof mining extracts finite information from these infinite arguments. The proposed research will apply the methods of proof mining in order to investigate: 1) explicit bounds on numerical quantities which are not made apparent by infinite proofs, 2) approximations of infinitary Ramsey theoretic statements which "quantify" (typically, with a countable ordinal) how transfinite a given construction is, and 3) new finitary analogs of infinitary methods. Where necessary, the proposed research will also expand the repertoire of proof mining tools by investigating how to interpret higher order notions, particularly the topological structure of the ultrafilters, in finitary terms.Questions in mathematics about concrete, finite properties of the integers often turn out to have answers that make use of abstract, infinite notions. The goal of the area of proof theory known as "proof mining" is to develop tools for explaining this phenomenon. Often, we discover that there are finite methods which can replace the infinite ones, at the price of making the argument much more difficult to understand. Some of these arguments are so unwieldy that it is difficult to imagine that they could be discovered directly. By "unwinding" the infinite argument into finite arguments, however, we often discover new information. For example, infinite proofs often prove that a number with some property exists while providing no information about which number it is; the corresponding finite argument, however, typically gives an upper bound on the size of that number.
这个项目涉及证明理论方法的发展,特别是被称为证明挖掘的领域,以及它们在拉姆齐理论中的应用。 拉姆齐理论中的许多定理可以用无穷方法证明,如超积、非标准分析、拓扑动力学和遍历理论。 证明挖掘从这些无限的参数中提取有限的信息。 拟议的研究将应用证明挖掘的方法,以调查:1)显式边界的数值量,这是不明显的无限证明,2)近似的无穷拉姆齐理论陈述“量化”(通常,与可数序数)如何超限一个给定的建设,和3)新的有限类似的无穷方法。 必要时,拟议的研究还将通过研究如何用有限术语解释高阶概念,特别是超滤子的拓扑结构,来扩展证据挖掘工具的全部内容。数学中有关整数的具体、有限性质的问题通常会得到答案,这些答案利用了抽象的无限概念。 被称为“证明挖掘”的证明理论领域的目标是开发解释这种现象的工具。 我们经常发现,有有限方法可以代替无限方法,代价是使论证更难理解。 其中一些论点是如此笨拙,以至于很难想象它们可以被直接发现。 然而,通过将无限论证“展开”为有限论证,我们常常会发现新的信息。 例如,无限证明通常证明一个具有某种性质的数存在,但不提供关于它是哪个数的信息;然而,相应的有限论证通常给出该数大小的上限。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry Towsner其他文献

Impact of an Emerging Scholars/Peer-Led Team Learning Program on the Recruitment of Undergraduate Women and Underrepresented Minorities into Computer Science and Mathematics
新兴学者/同行主导的团队学习计划对招募本科女性和代表性不足的少数族裔进入计算机科学和数学领域的影响
Transfinite approximation of Hindman’s theorem
  • DOI:
    10.1007/s11856-011-0195-1
  • 发表时间:
    2011-11-23
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Mathias Beiglböck;Henry Towsner
  • 通讯作者:
    Henry Towsner
Erdős–Moser and IΣ2
  • DOI:
    10.1007/s11856-024-2643-8
  • 发表时间:
    2024-08-04
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Henry Towsner;Keita Yokoyama
  • 通讯作者:
    Keita Yokoyama
Elements of Logical Reasoning by Jan von Plato
  • DOI:
    10.1007/s00283-015-9542-0
  • 发表时间:
    2015-04-22
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Henry Towsner
  • 通讯作者:
    Henry Towsner

Henry Towsner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henry Towsner', 18)}}的其他基金

Explicit Proofs from Compactness and Saturation
紧致性和饱和性的显式证明
  • 批准号:
    2054379
  • 财政年份:
    2021
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Standard Grant
Proof Theory: Finite Data from Infinite Mathematics
证明论:无限数学中的有限数据
  • 批准号:
    1600263
  • 财政年份:
    2016
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Continuing Grant
Proof Theoretic Aspects of Ergodic Ramsey Theory
遍历拉姆齐理论的证明理论方面
  • 批准号:
    1157580
  • 财政年份:
    2011
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Standard Grant
Proof Theoretic Aspects of Ergodic Ramsey Theory
遍历拉姆齐理论的证明理论方面
  • 批准号:
    1001528
  • 财政年份:
    2010
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Standard Grant

相似海外基金

Artificial Intelligence and Network Science: Solution Concepts, Graph-Theoretic Characterizations, and Their Societal Aspects
人工智能和网络科学:解决方案概念、图论特征及其社会方面
  • 批准号:
    RGPIN-2019-04904
  • 财政年份:
    2022
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Discovery Grants Program - Individual
Artificial Intelligence and Network Science: Solution Concepts, Graph-Theoretic Characterizations, and Their Societal Aspects
人工智能和网络科学:解决方案概念、图论特征及其社会方面
  • 批准号:
    RGPIN-2019-04904
  • 财政年份:
    2021
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Discovery Grants Program - Individual
Artificial Intelligence and Network Science: Solution Concepts, Graph-Theoretic Characterizations, and Their Societal Aspects
人工智能和网络科学:解决方案概念、图论特征及其社会方面
  • 批准号:
    RGPIN-2019-04904
  • 财政年份:
    2020
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Discovery Grants Program - Individual
Artificial Intelligence and Network Science: Solution Concepts, Graph-Theoretic Characterizations, and Their Societal Aspects
人工智能和网络科学:解决方案概念、图论特征及其社会方面
  • 批准号:
    RGPIN-2019-04904
  • 财政年份:
    2019
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Discovery Grants Program - Individual
FRG: Collaborative Research: Computability-Theoretic Aspects of Combinatorics
FRG:协作研究:组合学的可计算性理论方面
  • 批准号:
    1854107
  • 财政年份:
    2019
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Computability-Theoretic Aspects of Combinatorics
FRG:协作研究:组合学的可计算性理论方面
  • 批准号:
    1854279
  • 财政年份:
    2019
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Computability-Theoretic Aspects of Combinatorics
FRG:协作研究:组合学的可计算性理论方面
  • 批准号:
    1854360
  • 财政年份:
    2019
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Computability-Theoretic Aspects of Combinatorics
FRG:协作研究:组合学的可计算性理论方面
  • 批准号:
    1854136
  • 财政年份:
    2019
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Standard Grant
Complex Geometric and Lie Theoretic Aspects of Hodge Theory
霍奇理论的复杂几何和李理论方面
  • 批准号:
    1906352
  • 财政年份:
    2019
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Computability-Theoretic Aspects of Combinatorics
FRG:协作研究:组合学的可计算性理论方面
  • 批准号:
    1854355
  • 财政年份:
    2019
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了